Association of brain gamma-tubulins with alpha beta-tubulin dimers
gamma-Tubulin is necessary for nucleation and polar orientation of microtubules in vivo. The molecular mechanism of microtubule nucleation by gamma-tubulin and the regulation of this process are not fully understood. Here we show that there are two gamma-tubulin forms in the brain that are present i...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2002-08, Vol.365 (Pt 3), p.889-895 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | gamma-Tubulin is necessary for nucleation and polar orientation of microtubules in vivo. The molecular mechanism of microtubule nucleation by gamma-tubulin and the regulation of this process are not fully understood. Here we show that there are two gamma-tubulin forms in the brain that are present in complexes of various sizes. Large complexes tend to dissociate in the presence of a high salt concentration. Both gamma-tubulins co-polymerized with tubulin dimers, and multiple gamma-tubulin bands were identified in microtubule protein preparations under conditions of non-denaturing electrophoresis. Immunoprecipitation experiments with monoclonal antibodies against gamma-tubulin and alpha-tubulin revealed interactions of both gamma-tubulin forms with tubulin dimers, irrespective of the size of complexes. We suggest that, besides small and large gamma-tubulin complexes, other molecular gamma-tubulin form(s) exist in brain extracts. Two-dimensional electrophoresis revealed multiple charge variants of gamma-tubulin in both brain extracts and microtubule protein preparations. Post-translational modification(s) of gamma-tubulins might therefore have an important role in the regulation of microtubule nucleation in neuronal cells. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/BJ20020175 |