Subcellular localization and adaptive up-regulation of the System A (SAT2) amino acid transporter in skeletal-muscle cells and adipocytes

The recently cloned amino acid transporter SAT2 is ubiquitously expressed and confers Na(+)-dependent transport of short-chain neutral amino acids, characteristics of the functionally defined System A transporter. Here we report the presence of SAT2 mRNA and protein in both skeletal muscle and adipo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2001-05, Vol.355 (Pt 3), p.563-568
Hauptverfasser: Hyde, R, Christie, G R, Litherland, G J, Hajduch, E, Taylor, P M, Hundal, H S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recently cloned amino acid transporter SAT2 is ubiquitously expressed and confers Na(+)-dependent transport of short-chain neutral amino acids, characteristics of the functionally defined System A transporter. Here we report the presence of SAT2 mRNA and protein in both skeletal muscle and adipocytes, and the characterization of polyclonal antibodies directed against this transporter. SAT2 protein was present in both plasma-membrane and internal-membrane fractions derived from rat skeletal muscle and adipose tissue, L6 myotubes and 3T3-L1 adipocytes, having a localization similar to that of the glucose transporter GLUT4. Moreover, consistent with the adaptive up-regulation of System A activity following chronic amino acid deprivation, a time-dependent increase in SAT2 protein abundance was observed in amino-acid-deprived L6 myotubes and 3T3-L1 adipocytes. These studies provide the first evidence regarding the subcellular distribution and adaptive up-regulation of SAT2 protein and the characterization of molecular probes for this physiologically important transporter, the function of which is altered in several disease states.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3550563