Identification and characterization of a novel sucrose-non-fermenting protein kinase/AMP-activated protein kinase-related protein kinase, SNARK
Subtraction hybridization after the exposure of keratinocytes to ultraviolet radiation identified a differentially expressed cDNA that encodes a protein of 630 amino acid residues possessing significant similarity to the catalytic domain of the sucrose-non-fermenting protein kinase (SNF1)/AMP-activa...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2001-04, Vol.355 (Pt 2), p.297-305 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Subtraction hybridization after the exposure of keratinocytes to ultraviolet radiation identified a differentially expressed cDNA that encodes a protein of 630 amino acid residues possessing significant similarity to the catalytic domain of the sucrose-non-fermenting protein kinase (SNF1)/AMP-activated protein kinase (AMPK) family of serine/threonine protein kinases. Northern blotting and reverse-transcriptase-mediated PCR demonstrated that mRNA transcripts for the SNF1/AMPK-related kinase (SNARK) were widely expressed in rodent tissues. The SNARK gene was localized to human chromosome 1q32 by fluorescent in situ hybridization. SNARK was translated in vitro to yield a single protein band of approx. 76 kDa; Western analysis of transfected baby hamster kidney (BHK) cells detected two SNARK-immunoreactive bands of approx. 76-80 kDa. SNARK was capable of autophosphorylation in vitro; immunoprecipitated SNARK exhibited phosphotransferase activity with the synthetic peptide substrate HMRSAMSGLHLVKRR (SAMS) as a kinase substrate. SNARK activity was significantly increased by AMP and 5-amino-4-imidazolecarboxamide riboside (AICAriboside) in rat keratinocyte cells, implying that SNARK might be activated by an AMPK kinase-dependent pathway. Furthermore, glucose deprivation increased SNARK activity 3-fold in BHK fibroblasts. These findings identify SNARK as a glucose- and AICAriboside-regulated member of the AMPK-related gene family that represents a new candidate mediator of the cellular response to metabolic stress. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/0264-6021:3550297 |