Reconstitution of purified, active and malonyl-CoA-sensitive rat liver carnitine palmitoyltransferase I: relationship between membrane environment and malonyl-CoA sensitivity
Carnitine palmitoyltransferase I (CPT I) catalyses the initial step of fatty acid import into the mitochondrial matrix, the site of beta-oxidation, and its inhibition by malonyl-CoA is a primary control point for this process. The enzyme exists in at least two isoforms, denoted L-CPT I (liver type)...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2000-07, Vol.349 (Pt 1), p.179-187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carnitine palmitoyltransferase I (CPT I) catalyses the initial step of fatty acid import into the mitochondrial matrix, the site of beta-oxidation, and its inhibition by malonyl-CoA is a primary control point for this process. The enzyme exists in at least two isoforms, denoted L-CPT I (liver type) and M-CPT I (skeletal-muscle type), which differ in their kinetic characteristics and tissue distributions. A property apparently unique to L-CPT I is that its sensitivity to malonyl-CoA decreases in vivo with fasting or experimentally induced diabetes. The mechanism of this important regulatory effect is unknown and has aroused much interest. CPT I is an integral outer-membrane protein and displays little activity after removal from the membrane by detergents, precluding direct purification of active protein by conventional means. Here we describe the expression of a 6 x His-tagged rat L-CPT I in Pichia pastoris and purification of the detergent-solubilized enzyme in milligram quantities. Reconstitution of the purified product into a liposomal environment yielded a 200--400-fold increase in enzymic activity and restored malonyl-CoA sensitivity. This is the first time that a CPT I protein has been available for study in a form that is both pure and active. Comparison of the kinetic properties of the reconstituted material with those of L-CPT I as it exists in mitochondria prepared from yeast over-expressing the enzyme and in livers from fed or fasted rats permitted novel insight into several aspects of the enzyme's behaviour. The malonyl-CoA response of the liposomal enzyme was found to be greater when the reconstitution procedure was carried out at 22 degrees C compared with 4 degrees C (IC(50) approximately 11 microM versus 30 microM, respectively). When the sensitivities of L-CPT I in each of the different environments were compared, they were found to decrease in the following order: fed liver>fasted liver approximately liposomes prepared at 22 degrees C approximately P. pastoris mitochondria>liposomes prepared at 4 degrees C. In addition, pre-treatment of L-CPT I liposomes with the membrane-fluidizing reagent benzyl alcohol caused densensitization to the inhibitor. In contrast with the variable response to malonyl-CoA, the liposomal L-CPT I displayed a pH profile and kinetics with regard to the carnitine and acyl-CoA substrates similar to those of the enzyme in fed or fasted liver mitochondria. However, despite a normal sensitivity to malonyl-CoA, L-CPT I i |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/0264-6021:3490179 |