Proteophosphoglycans of Leishmania mexicana. Identification , purification, structural and ultrastructural characterization of the secreted promastigote proteophosphoglycan pPPG2, a stage-specific glycoisoform of amastigote aPPG

Protozoan parasites of the genus Leishmania secrete a range of proteophosphoglycans that appear to be important for successful colonization of the sandfly and for virulence in the mammalian host. A hallmark of these molecules is extensive phosphoglycosylation by phosphoglycan chains via the unusual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 1999-12, Vol.344 (3), p.775-786
Hauptverfasser: Klein, C, Gopfert, U, Goehring, N, Stierhof, Y.D, Ilg, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protozoan parasites of the genus Leishmania secrete a range of proteophosphoglycans that appear to be important for successful colonization of the sandfly and for virulence in the mammalian host. A hallmark of these molecules is extensive phosphoglycosylation by phosphoglycan chains via the unusual linkage Manalpha1-PO(4)-Ser. In this study we have identified and purified to apparent homogeneity a novel proteophosphoglycan (pPPG2) which is secreted by Leishmania mexicana promastigotes (sandfly stage). Amino acid analysis and immunoblots using polypeptide-specific antisera suggest that pPPG2 shares a common protein backbone with a proteophosphoglycan (aPPG) secreted by Leishmania mexicana amastigotes (mammalian stage). Both pPPG2 and aPPG show a similar degree of Ser phosphoglycosylation (50. 5 mol% vs. 44.6 mol%), but the structure of their phosphoglycan chains is developmentally regulated: in contrast to aPPG which displays unique, complex and highly branched glycan chains [Ilg, Craik, Currie, Multhaup, and Bacic (1998) J. Biol. Chem. 273, 13509-13523], pPPG2 contains short unbranched structures consisting of >60 mol% neutral glycans, most likely (Manalpha1-2)(0-5)Man and Galbeta1-4Man, as well as about 40 mol% monophosphorylated glycans of the proposed structures PO(4)-6Galbeta1-4Man and PO(4)-6(Glcbeta1-3)Galbeta1-4Man. The major differences between pPPG2 and aPPG with respect to their apparent molecular mass, their ultrastructure and their proteinase sensitivity are most likely a consequence of this stage-specific glycosylation of their common protein backbone.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3440775