P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain

Luminal membranes of the vascular endothelium were isolated from brain, heart and lungs by modification of their density. The presence of P-glycoprotein (P-gp) was detected by Western blotting in luminal membranes from the endothelium of the three tissues. Strong enrichment in brain capillary lumina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 1997-09, Vol.326 ( Pt 2) (2), p.539-544
Hauptverfasser: Beaulieu, E, Demeule, M, Ghitescu, L, Béliveau, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Luminal membranes of the vascular endothelium were isolated from brain, heart and lungs by modification of their density. The presence of P-glycoprotein (P-gp) was detected by Western blotting in luminal membranes from the endothelium of the three tissues. Strong enrichment in brain capillary luminal membranes, compared with brain capillaries (17-fold) and whole membranes (400-500-fold), indicates that P-gp is mainly located on the luminal side of the brain endothelium. Western blotting was also performed with antibodies directed against GLUT1, glial fibrillary acidic protein, adaptin, IP3R-3, integrins alphav and collagen IV as controls to determine whether the preparations were contaminated by other membranes. Strong enrichment of GLUT1 in brain capillary luminal membranes (9.9-fold) showed that the preparation consisted mainly of endothelial cell plasma membranes. Poor enrichment of glial fibrillary acidic protein (1.4-fold) and adaptin (2.4-fold) and a decreased level of IP3R-3, integrins alphav and collagen IV excludes the possibility of major contamination by astrocytes or internal and anti-luminal membranes. High levels of P-gp in the luminal membranes of brain capillary endothelial cells suggests that it may play an important role in limiting the access of anti-cancer drugs to the brain.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3260539