Genetic organization and adaptive response of allozymes to ecological variables in Fundulus heteroclitus
Populations of Fundulus heteroclitus, (Cyprinodontidae) a widespread coastal marine fish, were studied in control and artificially heated environments on the North Shore of Long Island, New York to determine (1) patterns of variation in biochemical phenotypes and (2) the extent to which this variati...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 1975-01, Vol.79 (1), p.97-111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Populations of Fundulus heteroclitus, (Cyprinodontidae) a widespread coastal marine fish, were studied in control and artificially heated environments on the North Shore of Long Island, New York to determine (1) patterns of variation in biochemical phenotypes and (2) the extent to which this variation reflected adaptation to environmental characteristics. Variation at three of twelve polymorphic isoenzyme loci from the warm water population was beyond the range of variation among control populations, and resembled those determined for populations living at more southern latitudes. Hence, these differences were interpreted as adaptations to warm environments. Significant differences in allele frequencies and zygotic proportions at ten of twelve isoenzyme loci were found associated with differences in environments, sexes, and/or age classes. These data strongly support the view that protein polymorphisms are adaptive. Several observations suggested that selection acts upon multilocus phenotypes rather than upon those of single loci. Several di-locus phenotypic distributions were demonstrated to be nonrandom, and those that exhibited similar patterns of dependence over years were postulated to be maintained by selection. Highly heterozygous fish exhibited superior viability when cohorts were compared over successive years. The consequences of the polygynous mating system in this species for maintaining genetic variation and for allowing rapid evolutionary response to a variable environment are discussed. |
---|---|
ISSN: | 0016-6731 1943-2631 1943-2631 |
DOI: | 10.1093/genetics/79.1.97 |