Heterochromatic Stellate Gene Cluster in Drosophila melanogaster: Structure and Molecular Evolution

The 30-kb cluster comprising close to 20 copies of tandemly repeated Stellate genes was localized in the distal heterochromatin of the X chromosome. Of 10 sequenced genes, nine contain undamaged open reading frames with extensive similarity to protein kinase CK2 beta-subunit; one gene is interrupted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 1997-05, Vol.146 (1), p.253-262
Hauptverfasser: Tulin, A. V, Kogan, G. L, Filipp, D, Balakireva, M. D, Gvozdev, V. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 30-kb cluster comprising close to 20 copies of tandemly repeated Stellate genes was localized in the distal heterochromatin of the X chromosome. Of 10 sequenced genes, nine contain undamaged open reading frames with extensive similarity to protein kinase CK2 beta-subunit; one gene is interrupted by an insertion. The heterochromatic array of Stellate repeats is divided into three regions by a 4.5-kb DNA segment of unknown origin and a retrotransposon insertion: the A region (approximately 14 Stellate genes), the adjacent B region (approximately three Stellate genes), and the C region (about four Stellate genes). The sequencing of Stellate copies located along the discontinuous cluster revealed a complex pattern of diversification. The lowest level of divergence was detected in nearby Stellate repeats. The marginal copies of the A region, truncated or interrupted by an insertion, escaped homogenization and demonstrated high levels of divergence. Comparison of copies in the B and C regions, which are separated by a retrotransposon insertion, revealed a high level of diversification. These observations suggest that homogenization takes place in the Stellate cluster, but that inserted sequences may impede this process.
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1093/genetics/146.1.253