Genetic and maternal variation for heat resistance in Drosophila from the field

In Drosophila, field heritability estimates have focused on morphological traits and ignored maternal effects. This study considers heritable variation and maternal effects in a physiological trait, heat resistance. Drosophila were collected from the field in Melbourne, Australia. Resistance was det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 1994-07, Vol.137 (3), p.783-789
Hauptverfasser: Jenkins, N.L, Hoffmann, A.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Drosophila, field heritability estimates have focused on morphological traits and ignored maternal effects. This study considers heritable variation and maternal effects in a physiological trait, heat resistance. Drosophila were collected from the field in Melbourne, Australia. Resistance was determined using knockdown time at 37 degrees. Drosophila melanogaster was more resistant than Drosophila simulans, and males tended to be more resistant than females. Field heritability and maternal effects were examined in D. simulans using the regression of laboratory-reared F1 and F2 onto field-collected parents. Males from the field were crossed to a laboratory stock to obtain progeny. The additive genetic component to variation in heat resistance was large and significant, and heritability was estimated to be around 0.5. A large maternal effect was also evident. Comparisons of regression coefficients suggested that the maternal effect was not associated with cytoplasmic factors. There was no correlation between body size (as measured by wing length) and heat resistance. Unlike in the case of morphological traits, the heritability for heat resistance in nature is not less than that measured in the laboratory.
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1093/genetics/137.3.783