Somatic and germinal recombination of a direct repeat in Arabidopsis

Homologous recombination between a pair of directly repeated transgenes was studied in Arabidopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an active HPT (hygromycin phosphotransferase) gene. This construct wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 1992-10, Vol.132 (2), p.553-566
Hauptverfasser: Assaad, F.F. (University of Munich), Signer, E.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue 2
container_start_page 553
container_title Genetics (Austin)
container_volume 132
creator Assaad, F.F. (University of Munich)
Signer, E.R
description Homologous recombination between a pair of directly repeated transgenes was studied in Arabidopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an active HPT (hygromycin phosphotransferase) gene. This construct was introduced into Arabidopsis by agrobacterium-mediated transformation with selection for resistance to hygromycin, and two independent single-insert lines were analyzed. Selection for active NPT by resistance to kanamycin gave both fully and partly (chimeric) recombinant seedlings. Rates for one transgenic line were estimated at 2 X 10(-5) events per division for germinal and 10(-6) events per division for somatic recombination, a much smaller difference than between meiotic and mitotic recombination in yeast. Southern analysis showed that recombinants could be formed by either crossing over or gene conversion. A surprisingly high fraction (at least 2/17) of the recombinants, however, appeared to result from the concerted action of two or more independent simple events. Some evolutionary implications are discussed
doi_str_mv 10.1093/genetics/132.2.553
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1205156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>5841394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-dbf590ee97948cbca3f23df5f4435928b590ac64ed9a19219bf12b803efa5a4a3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EKkvhC1RCihDilq3tsZ34glS15Y9UiUPp2Zo4dtZVEi92lhXfHqNd2sLJlt-b38z4EXLG6JpRDeeDm90SbD5nwNd8LSU8IyumBdRcAXtOVpQyVasG2EvyKud7SqnSsj0hJwyAtlytyNVtnLAwKpz7anBpCjOOVXI2Tl25LiHOVfQVVn0oj0tRtg6XKszVRcIu9HGbQ35NXngcs3tzPE_J3afr75df6ptvn79eXtzUVoJY6r7zUlPndKNFazuL4Dn0XnohQGredkVFq4TrNTLNme48411LwXmUKBBOyccDd7vrJtdbNy8JR7NNYcL0y0QM5l9lDhszxJ-GcSqZVAXw4QhI8cfO5cVMIVs3jji7uMuGKdUooLIY3_1nvI-7VL4mG85EwYmmLSZ-MNkUc07OP0zCqPkTkPkbkCkBGW5KQKXo7dMdHksOiRT9_VHHbHH0CWcb8oNNAKNlgsdNNmHY7Es2Jk84jgXKzH6_f9rv7GD0GA0OqbDubjVwrmQDvwEceLEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214120478</pqid></control><display><type>article</type><title>Somatic and germinal recombination of a direct repeat in Arabidopsis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Assaad, F.F. (University of Munich) ; Signer, E.R</creator><creatorcontrib>Assaad, F.F. (University of Munich) ; Signer, E.R</creatorcontrib><description>Homologous recombination between a pair of directly repeated transgenes was studied in Arabidopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an active HPT (hygromycin phosphotransferase) gene. This construct was introduced into Arabidopsis by agrobacterium-mediated transformation with selection for resistance to hygromycin, and two independent single-insert lines were analyzed. Selection for active NPT by resistance to kanamycin gave both fully and partly (chimeric) recombinant seedlings. Rates for one transgenic line were estimated at 2 X 10(-5) events per division for germinal and 10(-6) events per division for somatic recombination, a much smaller difference than between meiotic and mitotic recombination in yeast. Southern analysis showed that recombinants could be formed by either crossing over or gene conversion. A surprisingly high fraction (at least 2/17) of the recombinants, however, appeared to result from the concerted action of two or more independent simple events. Some evolutionary implications are discussed</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/132.2.553</identifier><identifier>PMID: 1330826</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>Bethesda, MD: Genetics Soc America</publisher><subject>Alleles ; Arabidopsis ; Arabidopsis - genetics ; Biological and medical sciences ; Biological Evolution ; CROSSING OVER ; Crossing Over, Genetic ; CRUCIFERAE ; CRUZAMIENTO INTERCROMOSOMICO ; DNA - genetics ; Flowers &amp; plants ; FOSFOTRASFERASA ; Fundamental and applied biological sciences. Psychology ; GENE ; Gene Conversion ; GENES ; Genetics ; Genic rearrangement. Recombination. Transposable element ; Investigations ; Kanamycin Kinase ; MITOSE ; MITOSIS ; Molecular and cellular biology ; Molecular genetics ; Mutation ; NEOMICINA ; NEOMYCINE ; Nicotiana - genetics ; Phenotype ; PHOSPHOTRANSFERASE ; Phosphotransferases (Alcohol Group Acceptor) ; Phosphotransferases - genetics ; PLANTAS TRANSGENICAS ; PLANTE TRANSGENIQUE ; Plants, Genetically Modified - genetics ; Plants, Toxic ; RECOMBINACION ; RECOMBINAISON ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; SEGREGACION ; SEGREGATION ; TRANSFERENCIA DE GENES ; TRANSFERT DE GENE ; TRANSFORMACION GENETICA ; TRANSFORMATION GENETIQUE</subject><ispartof>Genetics (Austin), 1992-10, Vol.132 (2), p.553-566</ispartof><rights>1993 INIST-CNRS</rights><rights>Copyright Genetics Society of America Oct 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-dbf590ee97948cbca3f23df5f4435928b590ac64ed9a19219bf12b803efa5a4a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4310214$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1330826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Assaad, F.F. (University of Munich)</creatorcontrib><creatorcontrib>Signer, E.R</creatorcontrib><title>Somatic and germinal recombination of a direct repeat in Arabidopsis</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Homologous recombination between a pair of directly repeated transgenes was studied in Arabidopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an active HPT (hygromycin phosphotransferase) gene. This construct was introduced into Arabidopsis by agrobacterium-mediated transformation with selection for resistance to hygromycin, and two independent single-insert lines were analyzed. Selection for active NPT by resistance to kanamycin gave both fully and partly (chimeric) recombinant seedlings. Rates for one transgenic line were estimated at 2 X 10(-5) events per division for germinal and 10(-6) events per division for somatic recombination, a much smaller difference than between meiotic and mitotic recombination in yeast. Southern analysis showed that recombinants could be formed by either crossing over or gene conversion. A surprisingly high fraction (at least 2/17) of the recombinants, however, appeared to result from the concerted action of two or more independent simple events. Some evolutionary implications are discussed</description><subject>Alleles</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>CROSSING OVER</subject><subject>Crossing Over, Genetic</subject><subject>CRUCIFERAE</subject><subject>CRUZAMIENTO INTERCROMOSOMICO</subject><subject>DNA - genetics</subject><subject>Flowers &amp; plants</subject><subject>FOSFOTRASFERASA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENE</subject><subject>Gene Conversion</subject><subject>GENES</subject><subject>Genetics</subject><subject>Genic rearrangement. Recombination. Transposable element</subject><subject>Investigations</subject><subject>Kanamycin Kinase</subject><subject>MITOSE</subject><subject>MITOSIS</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutation</subject><subject>NEOMICINA</subject><subject>NEOMYCINE</subject><subject>Nicotiana - genetics</subject><subject>Phenotype</subject><subject>PHOSPHOTRANSFERASE</subject><subject>Phosphotransferases (Alcohol Group Acceptor)</subject><subject>Phosphotransferases - genetics</subject><subject>PLANTAS TRANSGENICAS</subject><subject>PLANTE TRANSGENIQUE</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Toxic</subject><subject>RECOMBINACION</subject><subject>RECOMBINAISON</subject><subject>Recombination, Genetic</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>SEGREGACION</subject><subject>SEGREGATION</subject><subject>TRANSFERENCIA DE GENES</subject><subject>TRANSFERT DE GENE</subject><subject>TRANSFORMACION GENETICA</subject><subject>TRANSFORMATION GENETIQUE</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS0EKkvhC1RCihDilq3tsZ34glS15Y9UiUPp2Zo4dtZVEi92lhXfHqNd2sLJlt-b38z4EXLG6JpRDeeDm90SbD5nwNd8LSU8IyumBdRcAXtOVpQyVasG2EvyKud7SqnSsj0hJwyAtlytyNVtnLAwKpz7anBpCjOOVXI2Tl25LiHOVfQVVn0oj0tRtg6XKszVRcIu9HGbQ35NXngcs3tzPE_J3afr75df6ptvn79eXtzUVoJY6r7zUlPndKNFazuL4Dn0XnohQGredkVFq4TrNTLNme48411LwXmUKBBOyccDd7vrJtdbNy8JR7NNYcL0y0QM5l9lDhszxJ-GcSqZVAXw4QhI8cfO5cVMIVs3jji7uMuGKdUooLIY3_1nvI-7VL4mG85EwYmmLSZ-MNkUc07OP0zCqPkTkPkbkCkBGW5KQKXo7dMdHksOiRT9_VHHbHH0CWcb8oNNAKNlgsdNNmHY7Es2Jk84jgXKzH6_f9rv7GD0GA0OqbDubjVwrmQDvwEceLEA</recordid><startdate>19921001</startdate><enddate>19921001</enddate><creator>Assaad, F.F. (University of Munich)</creator><creator>Signer, E.R</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19921001</creationdate><title>Somatic and germinal recombination of a direct repeat in Arabidopsis</title><author>Assaad, F.F. (University of Munich) ; Signer, E.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-dbf590ee97948cbca3f23df5f4435928b590ac64ed9a19219bf12b803efa5a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Alleles</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>CROSSING OVER</topic><topic>Crossing Over, Genetic</topic><topic>CRUCIFERAE</topic><topic>CRUZAMIENTO INTERCROMOSOMICO</topic><topic>DNA - genetics</topic><topic>Flowers &amp; plants</topic><topic>FOSFOTRASFERASA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENE</topic><topic>Gene Conversion</topic><topic>GENES</topic><topic>Genetics</topic><topic>Genic rearrangement. Recombination. Transposable element</topic><topic>Investigations</topic><topic>Kanamycin Kinase</topic><topic>MITOSE</topic><topic>MITOSIS</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutation</topic><topic>NEOMICINA</topic><topic>NEOMYCINE</topic><topic>Nicotiana - genetics</topic><topic>Phenotype</topic><topic>PHOSPHOTRANSFERASE</topic><topic>Phosphotransferases (Alcohol Group Acceptor)</topic><topic>Phosphotransferases - genetics</topic><topic>PLANTAS TRANSGENICAS</topic><topic>PLANTE TRANSGENIQUE</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Toxic</topic><topic>RECOMBINACION</topic><topic>RECOMBINAISON</topic><topic>Recombination, Genetic</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>SEGREGACION</topic><topic>SEGREGATION</topic><topic>TRANSFERENCIA DE GENES</topic><topic>TRANSFERT DE GENE</topic><topic>TRANSFORMACION GENETICA</topic><topic>TRANSFORMATION GENETIQUE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Assaad, F.F. (University of Munich)</creatorcontrib><creatorcontrib>Signer, E.R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Assaad, F.F. (University of Munich)</au><au>Signer, E.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Somatic and germinal recombination of a direct repeat in Arabidopsis</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>1992-10-01</date><risdate>1992</risdate><volume>132</volume><issue>2</issue><spage>553</spage><epage>566</epage><pages>553-566</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Homologous recombination between a pair of directly repeated transgenes was studied in Arabidopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an active HPT (hygromycin phosphotransferase) gene. This construct was introduced into Arabidopsis by agrobacterium-mediated transformation with selection for resistance to hygromycin, and two independent single-insert lines were analyzed. Selection for active NPT by resistance to kanamycin gave both fully and partly (chimeric) recombinant seedlings. Rates for one transgenic line were estimated at 2 X 10(-5) events per division for germinal and 10(-6) events per division for somatic recombination, a much smaller difference than between meiotic and mitotic recombination in yeast. Southern analysis showed that recombinants could be formed by either crossing over or gene conversion. A surprisingly high fraction (at least 2/17) of the recombinants, however, appeared to result from the concerted action of two or more independent simple events. Some evolutionary implications are discussed</abstract><cop>Bethesda, MD</cop><pub>Genetics Soc America</pub><pmid>1330826</pmid><doi>10.1093/genetics/132.2.553</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 1992-10, Vol.132 (2), p.553-566
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1205156
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Alleles
Arabidopsis
Arabidopsis - genetics
Biological and medical sciences
Biological Evolution
CROSSING OVER
Crossing Over, Genetic
CRUCIFERAE
CRUZAMIENTO INTERCROMOSOMICO
DNA - genetics
Flowers & plants
FOSFOTRASFERASA
Fundamental and applied biological sciences. Psychology
GENE
Gene Conversion
GENES
Genetics
Genic rearrangement. Recombination. Transposable element
Investigations
Kanamycin Kinase
MITOSE
MITOSIS
Molecular and cellular biology
Molecular genetics
Mutation
NEOMICINA
NEOMYCINE
Nicotiana - genetics
Phenotype
PHOSPHOTRANSFERASE
Phosphotransferases (Alcohol Group Acceptor)
Phosphotransferases - genetics
PLANTAS TRANSGENICAS
PLANTE TRANSGENIQUE
Plants, Genetically Modified - genetics
Plants, Toxic
RECOMBINACION
RECOMBINAISON
Recombination, Genetic
Repetitive Sequences, Nucleic Acid
SEGREGACION
SEGREGATION
TRANSFERENCIA DE GENES
TRANSFERT DE GENE
TRANSFORMACION GENETICA
TRANSFORMATION GENETIQUE
title Somatic and germinal recombination of a direct repeat in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Somatic%20and%20germinal%20recombination%20of%20a%20direct%20repeat%20in%20Arabidopsis&rft.jtitle=Genetics%20(Austin)&rft.au=Assaad,%20F.F.%20(University%20of%20Munich)&rft.date=1992-10-01&rft.volume=132&rft.issue=2&rft.spage=553&rft.epage=566&rft.pages=553-566&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/132.2.553&rft_dat=%3Cproquest_pubme%3E5841394%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214120478&rft_id=info:pmid/1330826&rfr_iscdi=true