Somatic and germinal recombination of a direct repeat in Arabidopsis
Homologous recombination between a pair of directly repeated transgenes was studied in Arabidopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an active HPT (hygromycin phosphotransferase) gene. This construct wa...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 1992-10, Vol.132 (2), p.553-566 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 566 |
---|---|
container_issue | 2 |
container_start_page | 553 |
container_title | Genetics (Austin) |
container_volume | 132 |
creator | Assaad, F.F. (University of Munich) Signer, E.R |
description | Homologous recombination between a pair of directly repeated transgenes was studied in Arabidopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an active HPT (hygromycin phosphotransferase) gene. This construct was introduced into Arabidopsis by agrobacterium-mediated transformation with selection for resistance to hygromycin, and two independent single-insert lines were analyzed. Selection for active NPT by resistance to kanamycin gave both fully and partly (chimeric) recombinant seedlings. Rates for one transgenic line were estimated at 2 X 10(-5) events per division for germinal and 10(-6) events per division for somatic recombination, a much smaller difference than between meiotic and mitotic recombination in yeast. Southern analysis showed that recombinants could be formed by either crossing over or gene conversion. A surprisingly high fraction (at least 2/17) of the recombinants, however, appeared to result from the concerted action of two or more independent simple events. Some evolutionary implications are discussed |
doi_str_mv | 10.1093/genetics/132.2.553 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1205156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>5841394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-dbf590ee97948cbca3f23df5f4435928b590ac64ed9a19219bf12b803efa5a4a3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EKkvhC1RCihDilq3tsZ34glS15Y9UiUPp2Zo4dtZVEi92lhXfHqNd2sLJlt-b38z4EXLG6JpRDeeDm90SbD5nwNd8LSU8IyumBdRcAXtOVpQyVasG2EvyKud7SqnSsj0hJwyAtlytyNVtnLAwKpz7anBpCjOOVXI2Tl25LiHOVfQVVn0oj0tRtg6XKszVRcIu9HGbQ35NXngcs3tzPE_J3afr75df6ptvn79eXtzUVoJY6r7zUlPndKNFazuL4Dn0XnohQGredkVFq4TrNTLNme48411LwXmUKBBOyccDd7vrJtdbNy8JR7NNYcL0y0QM5l9lDhszxJ-GcSqZVAXw4QhI8cfO5cVMIVs3jji7uMuGKdUooLIY3_1nvI-7VL4mG85EwYmmLSZ-MNkUc07OP0zCqPkTkPkbkCkBGW5KQKXo7dMdHksOiRT9_VHHbHH0CWcb8oNNAKNlgsdNNmHY7Es2Jk84jgXKzH6_f9rv7GD0GA0OqbDubjVwrmQDvwEceLEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214120478</pqid></control><display><type>article</type><title>Somatic and germinal recombination of a direct repeat in Arabidopsis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Assaad, F.F. (University of Munich) ; Signer, E.R</creator><creatorcontrib>Assaad, F.F. (University of Munich) ; Signer, E.R</creatorcontrib><description>Homologous recombination between a pair of directly repeated transgenes was studied in Arabidopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an active HPT (hygromycin phosphotransferase) gene. This construct was introduced into Arabidopsis by agrobacterium-mediated transformation with selection for resistance to hygromycin, and two independent single-insert lines were analyzed. Selection for active NPT by resistance to kanamycin gave both fully and partly (chimeric) recombinant seedlings. Rates for one transgenic line were estimated at 2 X 10(-5) events per division for germinal and 10(-6) events per division for somatic recombination, a much smaller difference than between meiotic and mitotic recombination in yeast. Southern analysis showed that recombinants could be formed by either crossing over or gene conversion. A surprisingly high fraction (at least 2/17) of the recombinants, however, appeared to result from the concerted action of two or more independent simple events. Some evolutionary implications are discussed</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/132.2.553</identifier><identifier>PMID: 1330826</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>Bethesda, MD: Genetics Soc America</publisher><subject>Alleles ; Arabidopsis ; Arabidopsis - genetics ; Biological and medical sciences ; Biological Evolution ; CROSSING OVER ; Crossing Over, Genetic ; CRUCIFERAE ; CRUZAMIENTO INTERCROMOSOMICO ; DNA - genetics ; Flowers & plants ; FOSFOTRASFERASA ; Fundamental and applied biological sciences. Psychology ; GENE ; Gene Conversion ; GENES ; Genetics ; Genic rearrangement. Recombination. Transposable element ; Investigations ; Kanamycin Kinase ; MITOSE ; MITOSIS ; Molecular and cellular biology ; Molecular genetics ; Mutation ; NEOMICINA ; NEOMYCINE ; Nicotiana - genetics ; Phenotype ; PHOSPHOTRANSFERASE ; Phosphotransferases (Alcohol Group Acceptor) ; Phosphotransferases - genetics ; PLANTAS TRANSGENICAS ; PLANTE TRANSGENIQUE ; Plants, Genetically Modified - genetics ; Plants, Toxic ; RECOMBINACION ; RECOMBINAISON ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; SEGREGACION ; SEGREGATION ; TRANSFERENCIA DE GENES ; TRANSFERT DE GENE ; TRANSFORMACION GENETICA ; TRANSFORMATION GENETIQUE</subject><ispartof>Genetics (Austin), 1992-10, Vol.132 (2), p.553-566</ispartof><rights>1993 INIST-CNRS</rights><rights>Copyright Genetics Society of America Oct 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-dbf590ee97948cbca3f23df5f4435928b590ac64ed9a19219bf12b803efa5a4a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4310214$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1330826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Assaad, F.F. (University of Munich)</creatorcontrib><creatorcontrib>Signer, E.R</creatorcontrib><title>Somatic and germinal recombination of a direct repeat in Arabidopsis</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Homologous recombination between a pair of directly repeated transgenes was studied in Arabidopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an active HPT (hygromycin phosphotransferase) gene. This construct was introduced into Arabidopsis by agrobacterium-mediated transformation with selection for resistance to hygromycin, and two independent single-insert lines were analyzed. Selection for active NPT by resistance to kanamycin gave both fully and partly (chimeric) recombinant seedlings. Rates for one transgenic line were estimated at 2 X 10(-5) events per division for germinal and 10(-6) events per division for somatic recombination, a much smaller difference than between meiotic and mitotic recombination in yeast. Southern analysis showed that recombinants could be formed by either crossing over or gene conversion. A surprisingly high fraction (at least 2/17) of the recombinants, however, appeared to result from the concerted action of two or more independent simple events. Some evolutionary implications are discussed</description><subject>Alleles</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>CROSSING OVER</subject><subject>Crossing Over, Genetic</subject><subject>CRUCIFERAE</subject><subject>CRUZAMIENTO INTERCROMOSOMICO</subject><subject>DNA - genetics</subject><subject>Flowers & plants</subject><subject>FOSFOTRASFERASA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENE</subject><subject>Gene Conversion</subject><subject>GENES</subject><subject>Genetics</subject><subject>Genic rearrangement. Recombination. Transposable element</subject><subject>Investigations</subject><subject>Kanamycin Kinase</subject><subject>MITOSE</subject><subject>MITOSIS</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutation</subject><subject>NEOMICINA</subject><subject>NEOMYCINE</subject><subject>Nicotiana - genetics</subject><subject>Phenotype</subject><subject>PHOSPHOTRANSFERASE</subject><subject>Phosphotransferases (Alcohol Group Acceptor)</subject><subject>Phosphotransferases - genetics</subject><subject>PLANTAS TRANSGENICAS</subject><subject>PLANTE TRANSGENIQUE</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Toxic</subject><subject>RECOMBINACION</subject><subject>RECOMBINAISON</subject><subject>Recombination, Genetic</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>SEGREGACION</subject><subject>SEGREGATION</subject><subject>TRANSFERENCIA DE GENES</subject><subject>TRANSFERT DE GENE</subject><subject>TRANSFORMACION GENETICA</subject><subject>TRANSFORMATION GENETIQUE</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS0EKkvhC1RCihDilq3tsZ34glS15Y9UiUPp2Zo4dtZVEi92lhXfHqNd2sLJlt-b38z4EXLG6JpRDeeDm90SbD5nwNd8LSU8IyumBdRcAXtOVpQyVasG2EvyKud7SqnSsj0hJwyAtlytyNVtnLAwKpz7anBpCjOOVXI2Tl25LiHOVfQVVn0oj0tRtg6XKszVRcIu9HGbQ35NXngcs3tzPE_J3afr75df6ptvn79eXtzUVoJY6r7zUlPndKNFazuL4Dn0XnohQGredkVFq4TrNTLNme48411LwXmUKBBOyccDd7vrJtdbNy8JR7NNYcL0y0QM5l9lDhszxJ-GcSqZVAXw4QhI8cfO5cVMIVs3jji7uMuGKdUooLIY3_1nvI-7VL4mG85EwYmmLSZ-MNkUc07OP0zCqPkTkPkbkCkBGW5KQKXo7dMdHksOiRT9_VHHbHH0CWcb8oNNAKNlgsdNNmHY7Es2Jk84jgXKzH6_f9rv7GD0GA0OqbDubjVwrmQDvwEceLEA</recordid><startdate>19921001</startdate><enddate>19921001</enddate><creator>Assaad, F.F. (University of Munich)</creator><creator>Signer, E.R</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19921001</creationdate><title>Somatic and germinal recombination of a direct repeat in Arabidopsis</title><author>Assaad, F.F. (University of Munich) ; Signer, E.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-dbf590ee97948cbca3f23df5f4435928b590ac64ed9a19219bf12b803efa5a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Alleles</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>CROSSING OVER</topic><topic>Crossing Over, Genetic</topic><topic>CRUCIFERAE</topic><topic>CRUZAMIENTO INTERCROMOSOMICO</topic><topic>DNA - genetics</topic><topic>Flowers & plants</topic><topic>FOSFOTRASFERASA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENE</topic><topic>Gene Conversion</topic><topic>GENES</topic><topic>Genetics</topic><topic>Genic rearrangement. Recombination. Transposable element</topic><topic>Investigations</topic><topic>Kanamycin Kinase</topic><topic>MITOSE</topic><topic>MITOSIS</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutation</topic><topic>NEOMICINA</topic><topic>NEOMYCINE</topic><topic>Nicotiana - genetics</topic><topic>Phenotype</topic><topic>PHOSPHOTRANSFERASE</topic><topic>Phosphotransferases (Alcohol Group Acceptor)</topic><topic>Phosphotransferases - genetics</topic><topic>PLANTAS TRANSGENICAS</topic><topic>PLANTE TRANSGENIQUE</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Toxic</topic><topic>RECOMBINACION</topic><topic>RECOMBINAISON</topic><topic>Recombination, Genetic</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>SEGREGACION</topic><topic>SEGREGATION</topic><topic>TRANSFERENCIA DE GENES</topic><topic>TRANSFERT DE GENE</topic><topic>TRANSFORMACION GENETICA</topic><topic>TRANSFORMATION GENETIQUE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Assaad, F.F. (University of Munich)</creatorcontrib><creatorcontrib>Signer, E.R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Assaad, F.F. (University of Munich)</au><au>Signer, E.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Somatic and germinal recombination of a direct repeat in Arabidopsis</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>1992-10-01</date><risdate>1992</risdate><volume>132</volume><issue>2</issue><spage>553</spage><epage>566</epage><pages>553-566</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Homologous recombination between a pair of directly repeated transgenes was studied in Arabidopsis. The test construct included two different internal, non-overlapping deletion alleles of npt (neomycin phosphotransferase) flanking an active HPT (hygromycin phosphotransferase) gene. This construct was introduced into Arabidopsis by agrobacterium-mediated transformation with selection for resistance to hygromycin, and two independent single-insert lines were analyzed. Selection for active NPT by resistance to kanamycin gave both fully and partly (chimeric) recombinant seedlings. Rates for one transgenic line were estimated at 2 X 10(-5) events per division for germinal and 10(-6) events per division for somatic recombination, a much smaller difference than between meiotic and mitotic recombination in yeast. Southern analysis showed that recombinants could be formed by either crossing over or gene conversion. A surprisingly high fraction (at least 2/17) of the recombinants, however, appeared to result from the concerted action of two or more independent simple events. Some evolutionary implications are discussed</abstract><cop>Bethesda, MD</cop><pub>Genetics Soc America</pub><pmid>1330826</pmid><doi>10.1093/genetics/132.2.553</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 1992-10, Vol.132 (2), p.553-566 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1205156 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Alleles Arabidopsis Arabidopsis - genetics Biological and medical sciences Biological Evolution CROSSING OVER Crossing Over, Genetic CRUCIFERAE CRUZAMIENTO INTERCROMOSOMICO DNA - genetics Flowers & plants FOSFOTRASFERASA Fundamental and applied biological sciences. Psychology GENE Gene Conversion GENES Genetics Genic rearrangement. Recombination. Transposable element Investigations Kanamycin Kinase MITOSE MITOSIS Molecular and cellular biology Molecular genetics Mutation NEOMICINA NEOMYCINE Nicotiana - genetics Phenotype PHOSPHOTRANSFERASE Phosphotransferases (Alcohol Group Acceptor) Phosphotransferases - genetics PLANTAS TRANSGENICAS PLANTE TRANSGENIQUE Plants, Genetically Modified - genetics Plants, Toxic RECOMBINACION RECOMBINAISON Recombination, Genetic Repetitive Sequences, Nucleic Acid SEGREGACION SEGREGATION TRANSFERENCIA DE GENES TRANSFERT DE GENE TRANSFORMACION GENETICA TRANSFORMATION GENETIQUE |
title | Somatic and germinal recombination of a direct repeat in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Somatic%20and%20germinal%20recombination%20of%20a%20direct%20repeat%20in%20Arabidopsis&rft.jtitle=Genetics%20(Austin)&rft.au=Assaad,%20F.F.%20(University%20of%20Munich)&rft.date=1992-10-01&rft.volume=132&rft.issue=2&rft.spage=553&rft.epage=566&rft.pages=553-566&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/132.2.553&rft_dat=%3Cproquest_pubme%3E5841394%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214120478&rft_id=info:pmid/1330826&rfr_iscdi=true |