Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab, Limulus polyphemus

Restriction site variation in mitochondrial DNA (mtDNA) of the horseshoe crab (Limulus polyphemus) was surveyed in populations ranging from New Hampshire to the Gulf Coast of Florida. MtDNA clonal diversity was moderately high, particularly in southern samples, and a major genetic "break"...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 1986-03, Vol.112 (3), p.613-627
Hauptverfasser: SAUNDERS, N. C, KESSLER, L. G, AVISE, J. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Restriction site variation in mitochondrial DNA (mtDNA) of the horseshoe crab (Limulus polyphemus) was surveyed in populations ranging from New Hampshire to the Gulf Coast of Florida. MtDNA clonal diversity was moderately high, particularly in southern samples, and a major genetic "break" (nucleotide sequence divergence approximately 2%) distinguished all sampled individuals which were north vs. south of a region in northeastern Florida. The area of genotypic divergence in Limulus corresponds to a long-recognized zoogeographic boundary between warm-temperate and tropical marine faunas, and it suggests that selection pressures and/or gene flow barriers associated with water mass differences may also influence the evolution of species widely distributed across such transition zones. On the other hand, a comparison of the mtDNA divergence patterns in Limulus with computer models involving stochastic lineage extinction in species with limited gene flow demonstrates that deterministic explanations need not necessarily be invoked to account for the observations. Experiments to distinguish stochastic from deterministic possibilities are suggested. Overall, the pattern and magnitude of mtDNA differentiation in horseshoe crabs is very similar to that typically reported for freshwater and terrestrial species assayed over a comparable geographic range. Results demonstrate for the first time that, geographically, at least some continuously distributed marine organisms can show considerable mtDNA genetic differentiation.
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1093/genetics/112.3.613