genetic analysis of the pteridine biosynthetic enzyme, guanosine triphosphate cyclohydrolase, in Drosophila melanogaster
Strains with mutant eye color were surveyed for levels of GTP cyclohydrolase (GTP CH), the first enzyme acting in the biosynthesis of pteridines, the pigments causing red eye color in Drosophila. Six strains were found to have reduced GTP CH activity. In five of the six strains, the reduction of act...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 1983-09, Vol.105 (1), p.35-53 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Strains with mutant eye color were surveyed for levels of GTP cyclohydrolase (GTP CH), the first enzyme acting in the biosynthesis of pteridines, the pigments causing red eye color in Drosophila. Six strains were found to have reduced GTP CH activity. In five of the six strains, the reduction of activity is apparent only in the adult head of homozygous mutants. We show that mutations in Punch (2-97, Pu) have severe effects on GTP CH activity. In most cases, the reduction of activity is apparent in all tissues and stages that express the enzyme. The activity of GTP CH is shown to be closely correlated with the number of Pu+ genes in the genome. One ethyl methanesulfonate (EMS)-induced Pu mutant has a GTP CH enzyme that is unstable when compared with the wild-type enzyme. Mutations in Pu fall into three general classes. The largest class has a recessive lethal and eye color phenotype, 50% or higher GTP CH activity in heterozygotes, and equivalent defects in all tissues. A second class is dominant in eye color phenotype and recessive lethal, with less than 50% GTP CH activity in heterozygotes. The third class is homozygous viable and has severe reduction of activity in the adult head, but no or less severe loss in other tissues. |
---|---|
ISSN: | 0016-6731 1943-2631 1943-2631 |
DOI: | 10.1093/genetics/105.1.35 |