A Transcriptional Response to Replication Status Mediated by the Conserved Bacterial Replication Protein DnaA

Organisms respond to perturbations in DNA replication. We characterized the global transcriptional response to inhibition of DNA replication in Bacillus subtilis. We focused on changes that were independent of the known recA-dependent global DNA damage (SOS) response. We found that overlapping sets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-09, Vol.102 (36), p.12932-12937
Hauptverfasser: Goranov, Alexi I., Katz, Luba, Breier, Adam M., Burge, Christopher B., Grossman, Alan D., Gross, Carol A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organisms respond to perturbations in DNA replication. We characterized the global transcriptional response to inhibition of DNA replication in Bacillus subtilis. We focused on changes that were independent of the known recA-dependent global DNA damage (SOS) response. We found that overlapping sets of genes are affected by perturbations in replication elongation or initiation and that this transcriptional response serves to inhibit cell division and maintain cell viability. Approximately 20 of the operons (>50 genes) affected have potential DnaA-binding sites and are probably regulated directly by DnaA, the highly conserved replication initiation protein and transcription factor. Many of these genes have homologues and recognizable DnaA-binding sites in other bacteria, indicating that a DnaA-mediated response, elicited by changes in DNA replication status, may be conserved.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0506174102