Relation between the specific H reflex facilitation preceding a voluntary movement and movement parameters in man

In a reaction-time situation, the monosynaptic spinal reflex (H reflex) is facilitated before the onset of an electromyographic (e.m.g.) response. The aim of the present investigation was to study aspects of this facilitation. Human subjects were required to perform isometric plantarflexions of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 1984-02, Vol.347 (1), p.545-559
Hauptverfasser: Eichenberger, A, Rüegg, D G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a reaction-time situation, the monosynaptic spinal reflex (H reflex) is facilitated before the onset of an electromyographic (e.m.g.) response. The aim of the present investigation was to study aspects of this facilitation. Human subjects were required to perform isometric plantarflexions of the foot in response to a visual stimulus. The movement was always on the same side in the simple reaction-time situation, and randomly with the right or left foot in the choice reaction-time situation. Stimuli to evoke H reflexes were applied bilaterally 40-400 ms after the onset of the visual stimulus. Pre-motor time, i.e. the interval between the onset of the visual stimulus and the e.m.g. response, and reaction time, i.e. the interval between the onset of the visual stimulus and the response on the torque recording, were computed. In both reaction-time situations, there was a significant facilitation of the ipsilateral H reflex 100-160 ms before e.m.g. onset and, in some subjects, a small facilitation of the contralateral H reflex. The specific facilitation, i.e. the difference between the facilitation on the ipsi- and contralateral side relative to the movement, was not significantly different on the right and left side. Pre-motor time was divided into the interval from the light onset until the onset of the specific facilitation, and the interval from the onset of the facilitation until the onset of the voluntary response. Both intervals increased, and the slope and the amplitude of the facilitation decreased with increasing pre-motor time and reaction time. The specificity of the H reflex facilitation in a choice reaction-time situation implies that the interval from light onset until the onset of the facilitation includes stimulus identification and response selection, and the interval from the onset of the facilitation until the e.m.g. response preparation of the motor system for the required movement. The present results suggest that the specific facilitation of the H reflex before a movement is caused by removal of presynaptic inhibition at I a terminals or by activation of interneurones intercalated in polysynaptic components of the H reflex rather than by a subthreshold activation of motoneurones.
ISSN:0022-3751
1469-7793
DOI:10.1113/jphysiol.1984.sp015082