Mechanism of choline O-sulphate utilization in fungi

1. The position of the enzyme blocks in a number of parathiotrophic mutants of Aspergillus nidulans A 69 and mutants A and C of a biotinless mutant of Aspergillus nidulans were examined by nutritional and heterokaryosis experiments and by assay in vitro of enzyme systems and specific enzymes. 2. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 1968-01, Vol.106 (2), p.461-469
Hauptverfasser: Spencer, B, Hussey, E C, Orsi, B A, Scott, J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1. The position of the enzyme blocks in a number of parathiotrophic mutants of Aspergillus nidulans A 69 and mutants A and C of a biotinless mutant of Aspergillus nidulans were examined by nutritional and heterokaryosis experiments and by assay in vitro of enzyme systems and specific enzymes. 2. The mutants were in five groups: A and C blocked at sulphate transport; gamma at ATP sulphurylase; iota at adenosine 5'-sulphatophosphate kinase; eta at the adenosine 3'-phosphate 5'-sulphatophosphate reductase system; alpha, beta and zeta between sulphite and thiosulphate. 3. The ability of the various mutants to synthesize choline O-sulphate in vivo and in vitro and to utilize choline O-sulphate as a source of sulphur indicated that the utilization of endogenously formed choline O-sulphate involved the splitting off of inorganic sulphate, which was then reduced. 4. Choline O-sulphate acted as a source of choline for cholineless strains of Neurospora crassa, suggesting that choline O-sulphate breakdown occurred by simple hydrolysis involving a choline sulphatase. 5. After de-repression of mycelia by growing for a period on a sulphur-free medium the presence of choline sulphatase in physiologically significant amounts was demonstrated in all the A. nidulans strains tested. 6. Choline O-sulphate is transported across the mycelial wall by a mechanism different to that responsible for inorganic sulphate transport.
ISSN:0264-6021
0306-3283
1470-8728
DOI:10.1042/bj1060461