A cholinergic link in the reflex release of vasopressin by hypotension in the rat

Inhalation of amyl nitrite in the water-loaded rat under ethanol anaesthesia produced a brief fall of blood pressure followed by a prolonged antidiuretic response. The antidiuretic response to amyl nitrite was accompanied by increased urinary excretion of vasopressin, it was blocked by a specific va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 1984-09, Vol.354 (1), p.523-545
Hauptverfasser: Bisset, G W, Chowdrey, H S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhalation of amyl nitrite in the water-loaded rat under ethanol anaesthesia produced a brief fall of blood pressure followed by a prolonged antidiuretic response. The antidiuretic response to amyl nitrite was accompanied by increased urinary excretion of vasopressin, it was blocked by a specific vasopressin antagonist and by a barbiturate and it was absent in the Brattleboro rat with congenital diabetes insipidus. These results show that the antidiuretic response to the hypotension induced by amyl nitrite is due to the release of vasopressin and that this release is mediated by a neuroendocrine reflex acting through the brain stem. Carbachol and nicotine produced an antidiuretic response on injection into a lateral cerebral ventricle (i. vent.). Carbachol was almost ineffective, but nicotine much more effective, when injected into the cisterna magna (i.cist.) from which in the rat there is no access to the ventricles. Carbachol therefore acts at a site reached from the ventricles, possibly the paraventricular nucleus. Nicotine acts at a more distal site reached from the subarachnoid space. This site may correspond with the nicotine-sensitive area on the ventral surface of the brain stem which has been described in the cat. Atropine blocked the antidiuretic response to carbachol but not that to amyl nitrite. Hexamethonium blocked the antidiuretic response to amyl nitrite as well as that to nicotine and was more effective on i.cist. than i.vent. injection. These results reveal a cholinergic link with a nicotinic but not a muscarinic receptor in the neural pathways controlling the release of vasopressin in response to hypotension. A hypothetical model is presented in which the release of vasopressin is stimulated by a pathway arising from chemoreceptors and inhibited by a second pathway arising from stretch- and baroreceptors. Hypotension acts by suppressing the normally predominant inhibitory pathway and stimulating the excitatory pathway. Hexamethonium is presumed to block transmission at a synapse in the excitatory pathway at the ventral surface or, less probably, at the paraventricular and supraoptic nuclei.
ISSN:0022-3751
1469-7793
DOI:10.1113/jphysiol.1984.sp015391