Development of L-glutamate- and glycine-activated currents in spinal cord neurones during early chick embryogenesis
1. The membrane currents elicited by L-glutamate and glycine applications in morphologically different neurone types were investigated in isolated spinal cord cells from the lumbar enlargement of 6 to 11-day-old chick embryos. The whole-cell patch-clamp technique and concentration clamp methods have...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 1990-04, Vol.423 (1), p.381-395 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1. The membrane currents elicited by L-glutamate and glycine applications in morphologically different neurone types were
investigated in isolated spinal cord cells from the lumbar enlargement of 6 to 11-day-old chick embryos. The whole-cell patch-clamp
technique and concentration clamp methods have been used. Isolated spinal cord neurones of four stages were investigated:
6, 7.5, 9 and 11 days of incubation (29th, 32nd, 35th and 37th stages of development, respectively). 2. The L-glutamate-activated
conductance consisted of desensitizing and non-desensitizing components. The Hill coefficient for the first component was
1, and for the second was 2. The number of cells responding to L-glutamate application with only a desensitizing component
decreased from 53.4% on the 6th day of incubation to 6.7% on the 11th day, whereas the number of cells responding with bicomponent
responses increased during the same period from 13.3 to 87%. 3. From the 6th and 11th day of chick embryo development the
characteristics of the desensitizing component of L-glutamate-activated conductance remained constant (half-maximal dose,
(ED50 = 2.6 +/- 0.3 mM) whereas the ED50 for the non-desensitizing component decreased 10 times. 4. It was found that the
density of the desensitizing L-glutamate-activated ionic current increased during morphological and age-dependent differentiation
of spinal cord cells. 5. Of the investigated cells 88.7% were sensitive to glycine application. The smallest percentage of
neurones responding to glycine application was observed at 7.5 days of incubation. Glycine-activated conductance did not change
at the investigated stages (ED50, 71 +/- 2 microM; Hill coefficient, 2). 6. A significant decrease in the glycine-activated
current density was observed on the 9th day of incubation in multipolar neurones with three neurites, against a tendency to
an increase of glycine-activated ionic currents during morphological and age-dependent differentiation of cells. 7. Of the
investigated cells 78% were sensitive to both glycine and L-glutamate application. A negative correlation between glycine-
and L-glutamate-activated current densities (correlation coefficient, -0.71) was revealed by means of statistical analysis.
8. We conclude that these changes in chemosensitivity of the spinal cord neurones may underlie the increase in locomotor activity
of the chick embryo observed on the 9th day of incubation. |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1113/jphysiol.1990.sp018028 |