failure of selenium supplementation to prevent copper-induced liver damage in Fischer 344 rats
This study evaluates the ability of selenium (Se) supplementation to prevent experimental copper (Cu)-induced hepatocellular damage. Weanling male Fischer 344 rats were randomly assigned to groups of 15, 3 groups (A,B,C) were fed Cu-loaded diets (containing 2000 microg/g copper, added as CuSO4) and...
Gespeichert in:
Veröffentlicht in: | Canadian journal of veterinary research 2001-04, Vol.65 (2), p.104-110 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study evaluates the ability of selenium (Se) supplementation to prevent experimental copper (Cu)-induced hepatocellular damage. Weanling male Fischer 344 rats were randomly assigned to groups of 15, 3 groups (A,B,C) were fed Cu-loaded diets (containing 2000 microg/g copper, added as CuSO4) and different levels of Se (added as Na2SeO3 x 5H2O) as follows: A) Cu-loaded/Se adequate diet (0.4 microg/g Se, fed basis); B) Cu-loaded/Se-supplemented diet (2 microg/g Se); and C) Cu-loaded/Se-deficient diet (< 0.2 microg/g). Three additional groups (D,E,F) were fed diets containing adequate levels of Cu (14 microg/g Cu, fed basis) and different levels of Se as follows: D) Cu-adequate/Se-adequate diet; E) Cu-adequate/Se-supplemented diet (2 microg/g Se); and F) Cu-adequate/Se-deficient (< 0.2 microg/g) diet. After 4, 8, and 12 weeks on the experimental diets, liver samples were processed for histology, histochemistry, metal analysis, glutathione peroxidase (GSH-Px) measurement, and quantification of malondialdehyde (MDA). Morphologic changes characteristic of Cu-associated hepatitis, without an increase in hepatic MDA levels, were seen in all Cu-loaded rats in each sampling. Similar changes occurred in rats fed Se-adequate, Se-supplemented and Se-deficient diets. This study demonstrates that Fischer 344 rats fed 2000 microg/g Cu develop morphologic changes due to Cu toxicity without evidence of lipid peroxidation. Furthermore, Se supplementation does not result in protection against Cu-induced liver injury. |
---|---|
ISSN: | 0830-9000 |