X-ray micrography and imaging of Escherichia coli cell shape using laser plasma pulsed point x-ray sources

High-resolution x-ray microscopy is a relatively new technique and is performed mostly at a few large synchrotron x-ray sources that use exposure times of seconds. We utilized a bench-top source of single-shot laser (ns) plasma to generate x-rays similar to synchrotron facilities. A 5 microlitres su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1997-04, Vol.72 (4), p.1521-1526
Hauptverfasser: Rajyaguru, J.M., Kado, M., Richardson, M.C., Muszynski, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-resolution x-ray microscopy is a relatively new technique and is performed mostly at a few large synchrotron x-ray sources that use exposure times of seconds. We utilized a bench-top source of single-shot laser (ns) plasma to generate x-rays similar to synchrotron facilities. A 5 microlitres suspension of Escherichia coli ATCC 25922 in 0.9% phosphate buffered saline was placed on polymethylmethyacrylate coated photoresist, covered with a thin (100 nm) SiN window and positioned in a vacuum chamber close to the x-ray source. The emission spectrum was tuned for optimal absorption by carbon-rich material. Atomic force microscope scans provided a surface and topographical image of differential x-ray absorption corresponding to specimen properties. By using this technique we observed a distinct layer around whole cells, possibly representing the Gram-negative envelope, darker stained areas inside the cell corresponding to chromosomal DNA as seen by thin section electron microscopy, and dent(s) midway through one cell, and 1/3- and 2/3-lengths in another cell, possibly representing one or more division septa. This quick and high resolution with depth-of-field microscopy technique is unmatched to image live hydrated ultrastructure, and has much potential for application in the study of fragile biological specimens.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(97)78800-3