The use of a long-lifetime component of tryptophan to detect slow orientational fluctuations of proteins

The membrane protein porin and a synthetic polypeptide of 21 hydrophobic residues were inserted into detergent micelles or lipid membranes, and the fluorescence of their single tryptophan residue was measured in the time-resolved and polarized mode. In all cases, the tryptophan fluorescence exhibits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1997, Vol.72 (1), p.326-334
Hauptverfasser: Döring, K., Beck, W., Konermann, L., Jähnig, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The membrane protein porin and a synthetic polypeptide of 21 hydrophobic residues were inserted into detergent micelles or lipid membranes, and the fluorescence of their single tryptophan residue was measured in the time-resolved and polarized mode. In all cases, the tryptophan fluorescence exhibits a long-lifetime component of about 20 ns. This long-lifetime component was exploited to detect slow orientational motions in the range of tens of nanoseconds via the anisotropy decay. For this purpose, the analysis of the anisotropy has to be extended to account for different orientations of the dipoles of the short- and long-lifetime components. This is demonstrated for porin and the polypeptide solubilized in micelles, in which the longest relaxation time reflects the rotational diffusion of the micelle. When the polypeptide is inserted into lipid membranes, it forms a membrane-spanning alpha-helix, and the slowest relaxation process is interpreted as reflecting orientational fluctuations of the helix.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(97)78671-5