Synaptic physiology of spinal motoneurones of normal and spastic mice: an in vitro study
Spinal cord reflexes have been examined in a preparation of the mouse spinal cord maintained in vitro. Responses of the motoneurone population of normal and spastic mutant mice to stimulation of a segmental dorsal root were compared. In the normal spinal cord, a monosynaptic response with very littl...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 1986-10, Vol.379 (1), p.275-292 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spinal cord reflexes have been examined in a preparation of the mouse spinal cord maintained in vitro. Responses of the motoneurone
population of normal and spastic mutant mice to stimulation of a segmental dorsal root were compared. In the normal spinal
cord, a monosynaptic response with very little polysynaptic excitation was typical. In the mutant, the monosynaptic response
was typically followed by a depolarizing wave on which asynchronous compound action potentials were superimposed. In some
spastic cords, an oscillating depolarizing wave was seen, lasting up to 500 ms. The stimulus range from threshold to maximal
response was the same for the normal and mutant. The dorsal root reflex (d.r.r.) and dorsal root potential (d.r.p.) were prominent
in both normal and mutant, and no consistent difference could be identified. Intracellular recordings were made from motoneurones
using electrodes filled with potassium acetate. Mean resting potentials and input resistances were not significantly different
in mutant and normal mice. The voltage-dependent conductances, seen as the after-depolarization and after-hyperpolarizations
following antidromic action potentials and the responses of motoneurones to depolarizing current injection were similar in
both populations. The synaptic responses of motoneurones following stimulation of the segmental dorsal root were clearly abnormal
in the mutant. In the normal mice, a monosynaptic excitatory post-synaptic potential (e.p.s.p.), seen at low stimulus intensities,
was followed at higher stimulus intensities by polysynaptic activity lasting up to 100 ms, which rarely reached threshold
for action potential discharge. In the mutant mice, the monosynaptic response was typically followed by depolarizing synaptic
responses which often evoked action potentials before the monosynaptic response reached threshold. At higher stimulus intensities,
the monosynaptic response was followed by at least one and often multiple action potentials generated on prolonged depolarizing
synaptic activity. When cells were impaled with potassium-acetate-filled electrodes, very little spontaneous synaptic activity
was seen in either normal or mutant mice. Spontaneous depolarizing post-synaptic potentials (p.s.p.s) were prominent in normal
motoneurones when potassium chloride was used to fill electrodes and were increased in amplitude by ionophoresis of chloride
into the cells. Under these conditions stimulation of a ventral root evoked a depolarizing |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1113/jphysiol.1986.sp016253 |