Nickel Oxide Nanoparticles Derived from Coordination Polymer of PVA and Aminobenzoic Acid Derivative: Synthesis, Characterization and Antimicrobial Activity
This study focused on the synthesis, properties, and antibiological activity of NiO nanoparticles derived from polyvinyl alcohol (PVA) and aminobenzoic acid (P-ABA) derivatives by calcination method. The nanoparticles were synthesized using a simple, cost-effective method that involved the thermal d...
Gespeichert in:
Veröffentlicht in: | Polymers 2025-01, Vol.17 (3), p.301 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study focused on the synthesis, properties, and antibiological activity of NiO nanoparticles derived from polyvinyl alcohol (PVA) and aminobenzoic acid (P-ABA) derivatives by calcination method. The nanoparticles were synthesized using a simple, cost-effective method that involved the thermal decomposition of PVA and the incorporation of aminobenzoic acid. Characterization techniques such as X-ray diffraction (XRD), Kinetic analysis, and the thermal properties of nickel(II) metal complex in dynamic air were analyzed via TG and DTG. The kinetic analyses and thermodynamic parameters (∆H*, ∆G*, and ∆S*) for this compound were calculated by the Coats-Redfern and Horowitz-Metzger methods. The obtained kinetic parameters displayed the kinetic compensation effect. Electron microscopy (SEM and TEM) and (FT-IR) were employed to confirm the formation, morphology, and structural properties of the nanoparticles. The results indicated the successful synthesis of NiO nanoparticles with distinct crystalline phases and difference distributions. XRD confirmed that the resulting oxide was pure single-crystalline NiO nanoparticles. Scanning electron microscopy indicated that the crystallite size of nickel oxide nano-crystals was in the range of 26-36 nm. The magnetic moment was 2.59 B.M for Ni(II) complex. The antibiological activity of the synthesized nanoparticles was evaluated against bacterial strains, both Gram-positive and Gram-negative bacteria. The findings revealed significant antimicrobial properties, with the NiO nanoparticles demonstrating higher inhibitory effects against bacterial and fungal strains. This study highlights the potential of PVA and aminobenzoic acid derivatives as effective precursors for producing metal oxide nanoparticles with promising applications in antimicrobial treatments and materials science. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym17030301 |