Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal-Polymer Hybrid Structures

The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2025-01, Vol.17 (2), p.165
Hauptverfasser: Kim, Dong Hyun, Kim, Han Su, Jung, Yunki, Hong, Jin-Yong, Jeon, Young-Pyo, Lee, Jea Uk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding. Plasma treatment further augments the surface properties by increasing the concentration of functional groups, thus allowing better polymer infiltration during the 3D printing process. Comprehensive analyses, including X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and contact angle measurements confirm the substantial enhancement in the bonding strength achieved through this method. Additionally, cross-sectional analysis via focused ion-beam etching provides a detailed view of polymer integration into the treated layers. The findings suggest significant potential for these surface modification strategies to advance the development of lightweight, robust composites suitable for use in sectors such as automotive, aerospace, and consumer electronics.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym17020165