Radiomics in advanced gastroenteropancreatic neuroendocrine neoplasms: Identifying responders to somatostatin analogs

To evaluate a radiomic strategy for predicting progression in advanced gastroenteropancreatic neuroendocrine tumor (GEP‐NET) patients treated with somatostatin analogs (SSAs). Fifty‐eight patients with GEP‐NETs and liver metastases, with baseline computerized tomography (CT) scans from June 2013 to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroendocrinology 2025-01, Vol.37 (1), p.e13472-n/a
Hauptverfasser: Polici, Michela, Caruso, Damiano, Masci, Benedetta, Marasco, Matteo, Valanzuolo, Daniela, Dell'Unto, Elisabetta, Zerunian, Marta, Campana, Davide, De Santis, Domenico, Lamberti, Giuseppe, Iannicelli, Elsa, Prosperi, Daniela, Annibale, Bruno, Laghi, Andrea, Panzuto, Francesco, Rinzivillo, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To evaluate a radiomic strategy for predicting progression in advanced gastroenteropancreatic neuroendocrine tumor (GEP‐NET) patients treated with somatostatin analogs (SSAs). Fifty‐eight patients with GEP‐NETs and liver metastases, with baseline computerized tomography (CT) scans from June 2013 to November 2020, were studied retrospectively. Data collected included progression‐free survival (PFS), overall survival (OS), tumor grading, death, and Ki67 index. Patients were categorized into progressive and non‐progressive groups. Two radiologists performed 3D liver segmentation on baseline CT scans using 3DSlicer v4.10.2. One hundred six radiomic features were extracted and analyzed (T‐test or Mann–Whitney). Radiomic feature efficacy was evaluated via receiver operating characteristic curves, and both univariate and multivariate logistic regression were used to develop predictive models. A significance level of p 
ISSN:0953-8194
1365-2826
1365-2826
DOI:10.1111/jne.13472