Fabricating a SFMA/BAChol/PAA/ZnCl2 Hydrogel with Excellent Versatile Comprehensive Properties and Stable Sensitive Freezing-Tolerant Conductivity for Wearable Sensors
Flexible wearable sensors have obtained tremendous interest in various fields and conductive hydrogels are a promising candidate. Nevertheless, the insufficient mechanical properties, the low electrical conductivity and sensitivity, and the limited functional properties prevent the development of hy...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-12, Vol.25 (24), p.13339 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flexible wearable sensors have obtained tremendous interest in various fields and conductive hydrogels are a promising candidate. Nevertheless, the insufficient mechanical properties, the low electrical conductivity and sensitivity, and the limited functional properties prevent the development of hydrogels as wearable sensors. In this study, an SFMA/BAChol/PAA/ZnCl2 hydrogel was fabricated with high mechanical strength and versatile comprehensive properties. Specifically, the obtained hydrogel displayed excellent adhesion and mechanical stability, cryophylactic ability, stable sensitive freezing-tolerant conductivity, and feasible electrical conduction under a wide temperature range, demonstrating the high application potential as a flexible wearable sensor for movement behavior surveillance, even under harsh environments. Furthermore, the mechanical strength of the hydrogel could easily be regulated by varying the copolymer content. The molecular mechanisms of the hydrogel formation and the reversible adhesion during the wet-dry transition were proposed. The non-covalent interactions, including the electrostatic interaction, hydrogen bond interaction and hydrophobic association, and coordination interaction, were dynamically presented in the hydrogel network and hence supported the versatile comprehensive properties of the hydrogel. This study provides a strategy for designing novel hydrogels to promote the development of flexible sensors with stable sensitive freezing-tolerant conductivity. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms252413339 |