Semi-Automatic Refinement of Myocardial Segmentations for Better LVNC Detection

Accurate segmentation of the left ventricular myocardium in cardiac MRI is essential for developing reliable deep learning models to diagnose left ventricular non-compaction cardiomyopathy (LVNC). This work focuses on improving the segmentation database used to train these models, enhancing the qual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2025-01, Vol.14 (1), p.271
Hauptverfasser: Barón, Jaime Rafael, Bernabé, Gregorio, González-Férez, Pilar, García, José Manuel, Casas, Guillem, González-Carrillo, Josefa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate segmentation of the left ventricular myocardium in cardiac MRI is essential for developing reliable deep learning models to diagnose left ventricular non-compaction cardiomyopathy (LVNC). This work focuses on improving the segmentation database used to train these models, enhancing the quality of myocardial segmentation for more precise model training. We present a semi-automatic framework that refines segmentations through three fundamental approaches: (1) combining neural network outputs with expert-driven corrections, (2) implementing a blob-selection method to correct segmentation errors and neural network hallucinations, and (3) employing a cross-validation process using the baseline U-Net model. Applied to datasets from three hospitals, these methods demonstrate improved segmentation accuracy, with the blob-selection technique boosting the Dice coefficient for the Trabecular Zone by up to 0.06 in certain populations. Our approach enhances the dataset's quality, providing a more robust foundation for future LVNC diagnostic models.
ISSN:2077-0383
2077-0383
DOI:10.3390/jcm14010271