On escape criterion of an orbit with s−convexity and illustrations of the behavior shifts in Mandelbrot and Julia set fractals

Our study presents a novel orbit with s −convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type T α , β ( u ) = cos( u m )+ αu + β , for u , α , β ∈ C and m ≥ 2. We also demonstrate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2025-01, Vol.20 (1), p.e0312197
Hauptverfasser: Alam, Khairul Habib, Rohen, Yumnam, Saleem, Naeem, Aphane, Maggie, Razzaque, Asima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our study presents a novel orbit with s −convexity, for illustration of the behavior shift in the fractals. We provide a theorem to demonstrate the escape criterion for transcendental cosine functions of the type T α , β ( u ) = cos( u m )+ αu + β , for u , α , β ∈ C and m ≥ 2. We also demonstrate the impact of the parameters on the formatted fractals with numerical examples and graphical illustrations using the MATHEMATICA software, algorithm, and colormap. Moreover, we observe that the Julia set appears when we widen the Mandelbrot set at its petal edges, suggesting that each Mandelbrot set point contains a sizable quantity of Julia set picture data. It is commonly known that fractal geometry may capture the complexity of many intricate structures that exist in our surroundings.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0312197