Comparative analysis of qPCR and metagenomics for detecting antimicrobial resistance in wastewater: a case study

The World Health Organization (WHO) has declared antimicrobial resistance (AMR) as one of the top threats to global public health. While AMR surveillance of human clinical isolates is well-established in many countries, the increasing threat of AMR has intensified efforts to detect antibiotic resist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC research notes 2025-01, Vol.18 (1), p.5, Article 5
Hauptverfasser: Taylor, William, Bohm, Kristin, Dyet, Kristin, Weaver, Louise, Pattis, Isabelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The World Health Organization (WHO) has declared antimicrobial resistance (AMR) as one of the top threats to global public health. While AMR surveillance of human clinical isolates is well-established in many countries, the increasing threat of AMR has intensified efforts to detect antibiotic resistance genes (ARGs) accurately and sensitively in environmental samples, wastewater, animals, and food. Using five ARGs and the 16S rRNA gene, we compared quantitative PCR (qPCR) and metagenomic sequencing (MGS), two commonly used methods to uncover the wastewater resistome. We compared both methods by evaluating ARG detection through a municipal wastewater treatment chain. Our results demonstrate that qPCR was more sensitive than MGS, particularly in diluted samples with low ARG concentrations such as oxidation pond water. However, MGS was potentially more specific and has less risk of off-target binding in concentrated samples such as raw sewage. MGS analysis revealed multiple subtypes of each gene which could not be distinguished by qPCR; these subtypes varied across different sample types. Our findings affect the conclusions that can be drawn when comparing different sample types, particularly in terms of inferring removal rates or origins of genes. We conclude that both methods appear suitable to profile the resistome of wastewater and other environmental samples, depending on the research question and type of sample.
ISSN:1756-0500
1756-0500
DOI:10.1186/s13104-024-07027-9