NASA open science data repository: open science for life in space

Space biology and health data are critical for the success of deep space missions and sustainable human presence off-world. At the core of effectively managing biomedical risks is the commitment to open science principles, which ensure that data are findable, accessible, interoperable, reusable, rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2024-11, Vol.53 (D1), p.D1697-D1710
Hauptverfasser: Gebre, Samrawit G, Scott, Ryan T, Saravia-Butler, Amanda M, Lopez, Danielle K, Sanders, Lauren M, Costes, Sylvain V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Space biology and health data are critical for the success of deep space missions and sustainable human presence off-world. At the core of effectively managing biomedical risks is the commitment to open science principles, which ensure that data are findable, accessible, interoperable, reusable, reproducible and maximally open. The 2021 integration of the Ames Life Sciences Data Archive with GeneLab to establish the NASA Open Science Data Repository significantly enhanced access to a wide range of life sciences, biomedical-clinical and mission telemetry data alongside existing 'omics data from GeneLab. This paper describes the new database, its architecture and new data streams supporting diverse data types and enhancing data submission, retrieval and analysis. Features include the biological data management environment for improved data submission, a new user interface, controlled data access, an enhanced API and comprehensive public visualization tools for environmental telemetry, radiation dosimetry data and 'omics analyses. By fostering global collaboration through its analysis working groups and training programs, the open science data repository promotes widespread engagement in space biology, ensuring transparency and inclusivity in research. It supports the global scientific community in advancing our understanding of spaceflight's impact on biological systems, ensuring humans will thrive in future deep space missions.
ISSN:0305-1048
1362-4962
1362-4962
DOI:10.1093/nar/gkae1116