A Mattila–Sjölin theorem for simplices in low dimensions: A Mattila–Sjölin theorem for simplices in low dimensions

In this paper we show that if a compact set E ⊂ R d , d ≥ 3 , has Hausdorff dimension greater than ( 4 k - 1 ) 4 k d + 1 4 when 3 ≤ d < k ( k + 3 ) ( k - 1 ) or d - 1 k - 1 when k ( k + 3 ) ( k - 1 ) ≤ d , then the set of congruence class of simplices with vertices in E has nonempty interior. By...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2025-01, Vol.391 (1), p.1123-1146
Hauptverfasser: Palsson, Eyvindur Ari, Romero Acosta, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we show that if a compact set E ⊂ R d , d ≥ 3 , has Hausdorff dimension greater than ( 4 k - 1 ) 4 k d + 1 4 when 3 ≤ d < k ( k + 3 ) ( k - 1 ) or d - 1 k - 1 when k ( k + 3 ) ( k - 1 ) ≤ d , then the set of congruence class of simplices with vertices in E has nonempty interior. By set of congruence class of simplices with vertices in E we mean Δ k ( E ) = t = t ij : | x i - x j | = t ij ; x i , x j ∈ E ; 0 ≤ i < j ≤ k ⊂ R k ( k + 1 ) 2 where 2 ≤ k < d . This result improves the previous best results in the sense that we now can obtain a Hausdorff dimension threshold which allow us to guarantee that the set of congruence class of triangles formed by triples of points of E has nonempty interior when d = 3 as well as extending to all simplices. The present work can be thought of as an extension of the Mattila–Sjölin theorem which establishes a non-empty interior for the distance set instead of the set of congruence classes of simplices.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-024-02948-z