Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities
Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvi...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-12, Vol.15 (1), p.10861-11, Article 10861 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 10861 |
container_title | Nature communications |
container_volume | 15 |
creator | Li, Tong Wang, Xiaoyu Wang, Yuting Zhang, Yihong Li, Sirong Liu, Wanling Liu, Shujie Liu, Yufeng Xing, Hang Otake, Ken-ichi Kitagawa, Susumu Wu, Jiangjiexing Dong, Hao Wei, Hui |
description | Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal–organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases). The confinement of poly(acrylic acid) (PAA) into the channels of peroxidase-mimicking PCN-222-Fe (PCN = porous coordination network) nanozyme lowers its microenvironmental pH, enabling it to perform its best activity at pH 7.4 and to solve pH mismatch in cascade systems coupled with acid-denatured oxidases. Experimental investigations and molecular dynamics simulations reveal that PAA not only donates protons but also holds protons through the salt bridges between hydroniums and deprotonated carboxyl groups in neutral pH condition. Therefore, the confinement of poly(ethylene imine) increases the microenvironmental pH, leading to the enhanced hydrolase-mimicking activity of MOF nanozymes. This strategy is expected to pave a promising way for designing high-performance nanozymes and nanocatalysts for practical applications.
NCOMMS-24-44031B Nanozymes have found wide applications in various fields, but the deviation between the working and optimal pHs of nanozymes limits their practical applications. Here, the authors report a strategy to modulate the microenvironmental pHs of metal–organic framework nanozymes, enabling them to exhibit optimal activity under neutral pH conditions. |
doi_str_mv | 10.1038/s41467-024-55163-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11686145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_83c3d3c0dbd547418a899f2d537fc382</doaj_id><sourcerecordid>3150201901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-2db895af27de07ce67e68a49de9c4de41397e7dc4dcead77b59d2172602760743</originalsourceid><addsrcrecordid>eNp9kk1vFSEUhidGY5vaP-DCkLhxM5WvGWBlTKNtkxo3uiYMnLnlOgNXYG5Sf730Tq2tC9lAOC_P-eBtmtcEnxHM5PvMCe9Fiylvu470rOXPmmOKOWmJoOz5o_NRc5rzFtfFFJGcv2yOmBJMEiyOG_fF2xQh7H2KYYZQzITm6JbJFB8DGhKYHxn5UJIP2Vu0u0STn305hDOKIwomxF-3M2RUIhpizAWVG_AJGVv83hcP-VXzYjRThtP7_aT5_vnTt_PL9vrrxdX5x-vWMiFLS90gVWdGKhxgYaEX0EvDlQNluQNOatkgXD1bME6IoVOO1g57TEWPBWcnzdXKddFs9S752aRbHY3Xh4uYNtqk4u0EWjLLHLPYDa7jghNppFIjdR0To2WSVtaHlbVbhhlqxjoCMz2BPo0Ef6M3ca8J6WVPeFcJ7-4JKf5cIBc9-2xhmkyAuGTNSIcZ7zlVVfr2H-k2LinUWR1UFBOFSVXRVVV_LOcE40M1BOs7U-jVFLqaQh9Moe9m8uZxHw9P_ligCtgqyDUUNpD-5v4P9jcLdMQn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150201901</pqid></control><display><type>article</type><title>Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Li, Tong ; Wang, Xiaoyu ; Wang, Yuting ; Zhang, Yihong ; Li, Sirong ; Liu, Wanling ; Liu, Shujie ; Liu, Yufeng ; Xing, Hang ; Otake, Ken-ichi ; Kitagawa, Susumu ; Wu, Jiangjiexing ; Dong, Hao ; Wei, Hui</creator><creatorcontrib>Li, Tong ; Wang, Xiaoyu ; Wang, Yuting ; Zhang, Yihong ; Li, Sirong ; Liu, Wanling ; Liu, Shujie ; Liu, Yufeng ; Xing, Hang ; Otake, Ken-ichi ; Kitagawa, Susumu ; Wu, Jiangjiexing ; Dong, Hao ; Wei, Hui</creatorcontrib><description>Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal–organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases). The confinement of poly(acrylic acid) (PAA) into the channels of peroxidase-mimicking PCN-222-Fe (PCN = porous coordination network) nanozyme lowers its microenvironmental pH, enabling it to perform its best activity at pH 7.4 and to solve pH mismatch in cascade systems coupled with acid-denatured oxidases. Experimental investigations and molecular dynamics simulations reveal that PAA not only donates protons but also holds protons through the salt bridges between hydroniums and deprotonated carboxyl groups in neutral pH condition. Therefore, the confinement of poly(ethylene imine) increases the microenvironmental pH, leading to the enhanced hydrolase-mimicking activity of MOF nanozymes. This strategy is expected to pave a promising way for designing high-performance nanozymes and nanocatalysts for practical applications.
NCOMMS-24-44031B Nanozymes have found wide applications in various fields, but the deviation between the working and optimal pHs of nanozymes limits their practical applications. Here, the authors report a strategy to modulate the microenvironmental pHs of metal–organic framework nanozymes, enabling them to exhibit optimal activity under neutral pH conditions.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-55163-4</identifier><identifier>PMID: 39738107</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/350/59 ; 639/638/298/921 ; 639/638/77/887 ; Acrylic acid ; Acrylic Resins - chemistry ; Catalysis ; Confinement ; Deviation ; Enzymes ; Functional materials ; Humanities and Social Sciences ; Hydrogen-Ion Concentration ; Laboratories ; Metal-organic frameworks ; Metal-Organic Frameworks - chemistry ; Mimicry ; Molecular dynamics ; Molecular Dynamics Simulation ; multidisciplinary ; Nanomaterials ; Nanostructures - chemistry ; Nanotechnology ; Peroxidase ; Peroxidase - chemistry ; Peroxidase - metabolism ; pH effects ; Physiology ; Polyacrylic acid ; Polyethyleneimine ; Polymers ; Protons ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2024-12, Vol.15 (1), p.10861-11, Article 10861</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-2db895af27de07ce67e68a49de9c4de41397e7dc4dcead77b59d2172602760743</cites><orcidid>0000-0003-3917-8343 ; 0000-0002-2341-3372 ; 0000-0003-0870-7142 ; 0000-0002-7904-5003 ; 0000-0001-6956-9543 ; 0000-0001-7280-7506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686145/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686145/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39738107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Zhang, Yihong</creatorcontrib><creatorcontrib>Li, Sirong</creatorcontrib><creatorcontrib>Liu, Wanling</creatorcontrib><creatorcontrib>Liu, Shujie</creatorcontrib><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Xing, Hang</creatorcontrib><creatorcontrib>Otake, Ken-ichi</creatorcontrib><creatorcontrib>Kitagawa, Susumu</creatorcontrib><creatorcontrib>Wu, Jiangjiexing</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Wei, Hui</creatorcontrib><title>Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal–organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases). The confinement of poly(acrylic acid) (PAA) into the channels of peroxidase-mimicking PCN-222-Fe (PCN = porous coordination network) nanozyme lowers its microenvironmental pH, enabling it to perform its best activity at pH 7.4 and to solve pH mismatch in cascade systems coupled with acid-denatured oxidases. Experimental investigations and molecular dynamics simulations reveal that PAA not only donates protons but also holds protons through the salt bridges between hydroniums and deprotonated carboxyl groups in neutral pH condition. Therefore, the confinement of poly(ethylene imine) increases the microenvironmental pH, leading to the enhanced hydrolase-mimicking activity of MOF nanozymes. This strategy is expected to pave a promising way for designing high-performance nanozymes and nanocatalysts for practical applications.
NCOMMS-24-44031B Nanozymes have found wide applications in various fields, but the deviation between the working and optimal pHs of nanozymes limits their practical applications. Here, the authors report a strategy to modulate the microenvironmental pHs of metal–organic framework nanozymes, enabling them to exhibit optimal activity under neutral pH conditions.</description><subject>631/1647/350/59</subject><subject>639/638/298/921</subject><subject>639/638/77/887</subject><subject>Acrylic acid</subject><subject>Acrylic Resins - chemistry</subject><subject>Catalysis</subject><subject>Confinement</subject><subject>Deviation</subject><subject>Enzymes</subject><subject>Functional materials</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen-Ion Concentration</subject><subject>Laboratories</subject><subject>Metal-organic frameworks</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Mimicry</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Nanomaterials</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Peroxidase</subject><subject>Peroxidase - chemistry</subject><subject>Peroxidase - metabolism</subject><subject>pH effects</subject><subject>Physiology</subject><subject>Polyacrylic acid</subject><subject>Polyethyleneimine</subject><subject>Polymers</subject><subject>Protons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1vFSEUhidGY5vaP-DCkLhxM5WvGWBlTKNtkxo3uiYMnLnlOgNXYG5Sf730Tq2tC9lAOC_P-eBtmtcEnxHM5PvMCe9Fiylvu470rOXPmmOKOWmJoOz5o_NRc5rzFtfFFJGcv2yOmBJMEiyOG_fF2xQh7H2KYYZQzITm6JbJFB8DGhKYHxn5UJIP2Vu0u0STn305hDOKIwomxF-3M2RUIhpizAWVG_AJGVv83hcP-VXzYjRThtP7_aT5_vnTt_PL9vrrxdX5x-vWMiFLS90gVWdGKhxgYaEX0EvDlQNluQNOatkgXD1bME6IoVOO1g57TEWPBWcnzdXKddFs9S752aRbHY3Xh4uYNtqk4u0EWjLLHLPYDa7jghNppFIjdR0To2WSVtaHlbVbhhlqxjoCMz2BPo0Ef6M3ca8J6WVPeFcJ7-4JKf5cIBc9-2xhmkyAuGTNSIcZ7zlVVfr2H-k2LinUWR1UFBOFSVXRVVV_LOcE40M1BOs7U-jVFLqaQh9Moe9m8uZxHw9P_ligCtgqyDUUNpD-5v4P9jcLdMQn</recordid><startdate>20241230</startdate><enddate>20241230</enddate><creator>Li, Tong</creator><creator>Wang, Xiaoyu</creator><creator>Wang, Yuting</creator><creator>Zhang, Yihong</creator><creator>Li, Sirong</creator><creator>Liu, Wanling</creator><creator>Liu, Shujie</creator><creator>Liu, Yufeng</creator><creator>Xing, Hang</creator><creator>Otake, Ken-ichi</creator><creator>Kitagawa, Susumu</creator><creator>Wu, Jiangjiexing</creator><creator>Dong, Hao</creator><creator>Wei, Hui</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3917-8343</orcidid><orcidid>https://orcid.org/0000-0002-2341-3372</orcidid><orcidid>https://orcid.org/0000-0003-0870-7142</orcidid><orcidid>https://orcid.org/0000-0002-7904-5003</orcidid><orcidid>https://orcid.org/0000-0001-6956-9543</orcidid><orcidid>https://orcid.org/0000-0001-7280-7506</orcidid></search><sort><creationdate>20241230</creationdate><title>Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities</title><author>Li, Tong ; Wang, Xiaoyu ; Wang, Yuting ; Zhang, Yihong ; Li, Sirong ; Liu, Wanling ; Liu, Shujie ; Liu, Yufeng ; Xing, Hang ; Otake, Ken-ichi ; Kitagawa, Susumu ; Wu, Jiangjiexing ; Dong, Hao ; Wei, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-2db895af27de07ce67e68a49de9c4de41397e7dc4dcead77b59d2172602760743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/1647/350/59</topic><topic>639/638/298/921</topic><topic>639/638/77/887</topic><topic>Acrylic acid</topic><topic>Acrylic Resins - chemistry</topic><topic>Catalysis</topic><topic>Confinement</topic><topic>Deviation</topic><topic>Enzymes</topic><topic>Functional materials</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen-Ion Concentration</topic><topic>Laboratories</topic><topic>Metal-organic frameworks</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Mimicry</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Nanomaterials</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Peroxidase</topic><topic>Peroxidase - chemistry</topic><topic>Peroxidase - metabolism</topic><topic>pH effects</topic><topic>Physiology</topic><topic>Polyacrylic acid</topic><topic>Polyethyleneimine</topic><topic>Polymers</topic><topic>Protons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Zhang, Yihong</creatorcontrib><creatorcontrib>Li, Sirong</creatorcontrib><creatorcontrib>Liu, Wanling</creatorcontrib><creatorcontrib>Liu, Shujie</creatorcontrib><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Xing, Hang</creatorcontrib><creatorcontrib>Otake, Ken-ichi</creatorcontrib><creatorcontrib>Kitagawa, Susumu</creatorcontrib><creatorcontrib>Wu, Jiangjiexing</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Wei, Hui</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tong</au><au>Wang, Xiaoyu</au><au>Wang, Yuting</au><au>Zhang, Yihong</au><au>Li, Sirong</au><au>Liu, Wanling</au><au>Liu, Shujie</au><au>Liu, Yufeng</au><au>Xing, Hang</au><au>Otake, Ken-ichi</au><au>Kitagawa, Susumu</au><au>Wu, Jiangjiexing</au><au>Dong, Hao</au><au>Wei, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-12-30</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>10861</spage><epage>11</epage><pages>10861-11</pages><artnum>10861</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal–organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases). The confinement of poly(acrylic acid) (PAA) into the channels of peroxidase-mimicking PCN-222-Fe (PCN = porous coordination network) nanozyme lowers its microenvironmental pH, enabling it to perform its best activity at pH 7.4 and to solve pH mismatch in cascade systems coupled with acid-denatured oxidases. Experimental investigations and molecular dynamics simulations reveal that PAA not only donates protons but also holds protons through the salt bridges between hydroniums and deprotonated carboxyl groups in neutral pH condition. Therefore, the confinement of poly(ethylene imine) increases the microenvironmental pH, leading to the enhanced hydrolase-mimicking activity of MOF nanozymes. This strategy is expected to pave a promising way for designing high-performance nanozymes and nanocatalysts for practical applications.
NCOMMS-24-44031B Nanozymes have found wide applications in various fields, but the deviation between the working and optimal pHs of nanozymes limits their practical applications. Here, the authors report a strategy to modulate the microenvironmental pHs of metal–organic framework nanozymes, enabling them to exhibit optimal activity under neutral pH conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39738107</pmid><doi>10.1038/s41467-024-55163-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3917-8343</orcidid><orcidid>https://orcid.org/0000-0002-2341-3372</orcidid><orcidid>https://orcid.org/0000-0003-0870-7142</orcidid><orcidid>https://orcid.org/0000-0002-7904-5003</orcidid><orcidid>https://orcid.org/0000-0001-6956-9543</orcidid><orcidid>https://orcid.org/0000-0001-7280-7506</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-12, Vol.15 (1), p.10861-11, Article 10861 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11686145 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 631/1647/350/59 639/638/298/921 639/638/77/887 Acrylic acid Acrylic Resins - chemistry Catalysis Confinement Deviation Enzymes Functional materials Humanities and Social Sciences Hydrogen-Ion Concentration Laboratories Metal-organic frameworks Metal-Organic Frameworks - chemistry Mimicry Molecular dynamics Molecular Dynamics Simulation multidisciplinary Nanomaterials Nanostructures - chemistry Nanotechnology Peroxidase Peroxidase - chemistry Peroxidase - metabolism pH effects Physiology Polyacrylic acid Polyethyleneimine Polymers Protons Science Science (multidisciplinary) |
title | Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microenvironmental%20modulation%20breaks%20intrinsic%20pH%20limitations%20of%20nanozymes%20to%20boost%20their%20activities&rft.jtitle=Nature%20communications&rft.au=Li,%20Tong&rft.date=2024-12-30&rft.volume=15&rft.issue=1&rft.spage=10861&rft.epage=11&rft.pages=10861-11&rft.artnum=10861&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-55163-4&rft_dat=%3Cproquest_doaj_%3E3150201901%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150201901&rft_id=info:pmid/39738107&rft_doaj_id=oai_doaj_org_article_83c3d3c0dbd547418a899f2d537fc382&rfr_iscdi=true |