Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-12, Vol.15 (1), p.10861-11, Article 10861
Hauptverfasser: Li, Tong, Wang, Xiaoyu, Wang, Yuting, Zhang, Yihong, Li, Sirong, Liu, Wanling, Liu, Shujie, Liu, Yufeng, Xing, Hang, Otake, Ken-ichi, Kitagawa, Susumu, Wu, Jiangjiexing, Dong, Hao, Wei, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal–organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases). The confinement of poly(acrylic acid) (PAA) into the channels of peroxidase-mimicking PCN-222-Fe (PCN = porous coordination network) nanozyme lowers its microenvironmental pH, enabling it to perform its best activity at pH 7.4 and to solve pH mismatch in cascade systems coupled with acid-denatured oxidases. Experimental investigations and molecular dynamics simulations reveal that PAA not only donates protons but also holds protons through the salt bridges between hydroniums and deprotonated carboxyl groups in neutral pH condition. Therefore, the confinement of poly(ethylene imine) increases the microenvironmental pH, leading to the enhanced hydrolase-mimicking activity of MOF nanozymes. This strategy is expected to pave a promising way for designing high-performance nanozymes and nanocatalysts for practical applications. NCOMMS-24-44031B Nanozymes have found wide applications in various fields, but the deviation between the working and optimal pHs of nanozymes limits their practical applications. Here, the authors report a strategy to modulate the microenvironmental pHs of metal–organic framework nanozymes, enabling them to exhibit optimal activity under neutral pH conditions.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-55163-4