Bioinspired Metal–Ligand Networks with Enhanced Stability and Performance: Facile Preparation of Hydroxypyridinone (HOPO)-Functionalized Materials
Bioinspired hydroxypyridinone (HOPO)functionalized materials are shown to display a remarkable capacity for stability and for chelating a wide array of metal ions. This allows for the synthesis of multifunctional networks with diverse physical properties when compared to traditional catechol system...
Gespeichert in:
Veröffentlicht in: | Macromolecules 2024-12, Vol.57 (24), p.11339-11349 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bioinspired hydroxypyridinone (HOPO)functionalized materials are shown to display a remarkable capacity for stability and for chelating a wide array of metal ions. This allows for the synthesis of multifunctional networks with diverse physical properties when compared to traditional catechol systems. In the present study, we report a facile, one-pot synthesis of an amino HOPO ligand and simple, scalable incorporation into PEG-acrylate based networks via active ester chemistry. This modular network approach allows for fabrication of patterned HOPO containing networks which can chelate a range of metal ions, such as transition metals (Fe3+) and lanthanides (Ho3+, Tb3+), leading to modulation of mechanical, magnetic, and fluorescent properties. Moreover, networks with tailored, heterogeneous properties can be prepared through localization of metal ion incorporation in 3-dimensions via masking techniques, creating distinctly soft, hard, magnetic, and fluorescent domains. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.4c02250 |