Ferromagnetic Exchange and Slow Magnetic Relaxation in Cobalt Bis(1,2-dithiolene)-Bridged Dilanthanide Complexes

The construction of multinuclear lanthanide-based molecules with significant magnetic exchange interactions represents a key challenge in the realization of single-molecule magnets with high operating temperatures. Here, we report the synthesis and magnetic characterization of two series of heterobi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2024-12, Vol.63 (51), p.24150-24156
Hauptverfasser: Vincent, Alexandre H., Lubert-Perquel, Daphné, Hill, Stephen, Long, Jeffrey R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The construction of multinuclear lanthanide-based molecules with significant magnetic exchange interactions represents a key challenge in the realization of single-molecule magnets with high operating temperatures. Here, we report the synthesis and magnetic characterization of two series of heterobimetallic compounds, (Cp*2Ln)2(μ-Co­(pdt)2) (Ln = Y3+, Gd3+, Dy3+; pdt2– = 1,2-diphenylethylenedithiolate) and [K­(18-crown-6)]­[(Cp*2Ln)2(μ-Co­(pdt)2)] (Ln = Y3+, Gd3+), featuring two lanthanide centers bridged by a cobalt bis­(1,2-dithiolene) complex. Dc magnetic susceptibility data collected for the Gd congeners indicate significant Gd–Co ferromagnetic exchange interactions with fits affording J = +11.5 and +7.33 cm–1, respectively. Magnetization decay and ac magnetic susceptibility measurements carried out on the single-molecule magnet (Cp*2Dy)2(μ-Co­(pdt)2) reveal full suppression of quantum tunneling and open-loop hysteresis persisting up to 3.5 K. These results, along with those of high-field EPR spectroscopy, suggest that transition metalloligands can enforce strong exchange interactions with adjacent lanthanide centers while maintaining a geometry that preserves molecular anisotropy. Furthermore, the magnetic properties of [K­(18-crown-6)]­[(Cp*2Gd)2(μ-Co­(pdt)2)] show that increasing the spin of the ground state of the bridging complex may be a viable alternative to increasing J in obtaining well-isolated, strongly coupled magnetic ground states.
ISSN:0020-1669
1520-510X
1520-510X
DOI:10.1021/acs.inorgchem.4c03828