3D Printed Carbon Nanotube/Phenolic Composites for Thermal Dissipation and Electromagnetic Interference Shielding
Here we demonstrate direct ink write (DIW) additive manufacturing of carbon nanotube (CNT)/phenolic composites with heat dissipation and excellent electromagnetic interference (EMI) shielding capabilities without curing-induced deformation. Such polymer composites are valuable for protecting electro...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-12, Vol.16 (50), p.69929-69939 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here we demonstrate direct ink write (DIW) additive manufacturing of carbon nanotube (CNT)/phenolic composites with heat dissipation and excellent electromagnetic interference (EMI) shielding capabilities without curing-induced deformation. Such polymer composites are valuable for protecting electronic devices from overheating and electromagnetic interference. CNTs were used as a multifunctional nanofiller to improve electrical and thermal conductivity, printability, stability during curing, and EMI shielding performance of CNT/phenolic composites. Different CNT loadings, curing conditions, substrate types, and sample sizes were explored to minimize the negative effects of the byproducts released from the cross-linking reactions of phenolic on the printed shape integrity. At a CNT loading of 10 wt %, a slow curing cycle enables us to cure printed thin-walled CNT/phenolic composites with highly dense structures; such structures are impossible without a filler. Moreover, the electrical conductivity of the printed 10 wt % CNT/phenolic composites increased by orders of magnitude due to CNT percolation, while an improvement of 92% in thermal conductivity was achieved over the neat phenolic. EMI shielding effectiveness of the printed CNT/phenolic composites reaches 41.6 dB at the same CNT loading, offering a shielding efficiency of 99.99%. The results indicate that high CNT loading, a slow curing cycle, flexible substrates, and one thin sample dimension are the key factors to produce high-performance 3D-printed CNT/phenolic composites to address the overheating and EMI issues of modern electronic devices. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c17115 |