Aberrant associations between neuronal resting-state fluctuations and working memory-induced activity in major depressive disorder
Previous investigations have revealed performance deficits and altered neural processes during working-memory (WM) tasks in major depressive disorder (MDD). While most of these studies used task-based functional magnetic resonance imaging (fMRI), there is an increasing interest in resting-state fMRI...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2025, Vol.30 (1), p.4-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous investigations have revealed performance deficits and altered neural processes during working-memory (WM) tasks in major depressive disorder (MDD). While most of these studies used task-based functional magnetic resonance imaging (fMRI), there is an increasing interest in resting-state fMRI to characterize aberrant network dynamics involved in this and other MDD-associated symptoms. It has been proposed that activity during the resting-state represents characteristics of brain-wide functional organization, which could be highly relevant for the efficient execution of cognitive tasks. However, the dynamics linking resting-state properties and task-evoked activity remain poorly understood. Therefore, the present study investigated the association between spontaneous activity as indicated by the amplitude of low frequency fluctuations (ALFF) at rest and activity during an emotional n-back task. 60 patients diagnosed with an acute MDD episode, and 52 healthy controls underwent the fMRI scanning procedure. Within both groups, positive correlations between spontaneous activity at rest and task-activation were found in core regions of the central-executive network (CEN), whereas spontaneous activity correlated negatively with task-deactivation in regions of the default mode network (DMN). Compared to healthy controls, patients showed a decreased rest-task correlation in the left prefrontal cortex (CEN) and an increased negative correlation in the precuneus/posterior cingulate cortex (DMN). Interestingly, no significant group-differences within those regions were found solely at rest or during the task. The results underpin the potential value and importance of resting-state markers for the understanding of dysfunctional network dynamics and neural substrates of cognitive processing. |
---|---|
ISSN: | 1359-4184 1476-5578 1476-5578 |
DOI: | 10.1038/s41380-024-02647-w |