Synthesis, Characterization, and Application Prospects of Novel Soluble Polysilsesquioxane Bearing Glutarimide Side-Chain Groups

The requirement for the development of advanced technologies is the need to create new functional thermostable soluble polysilsesquioxanes. Combining the potential of organosilicon chemistry and the chemistry of heterocyclic compounds is a promising direction for the formation of novel organosilicon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-11, Vol.16 (23), p.3235
Hauptverfasser: Bolgova, Yuliya I, Emel'yanov, Artem I, Trofimova, Olga M, Ivanova, Anastasiya A, Albanov, Alexander I, Kuznetsova, Nadezhda P, Semenova, Tatyana A, Pozdnyakov, Alexander S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The requirement for the development of advanced technologies is the need to create new functional thermostable soluble polysilsesquioxanes. Combining the potential of organosilicon chemistry and the chemistry of heterocyclic compounds is a promising direction for the formation of novel organosilicon polymer systems with new properties and new possibilities for their practical application. Using the classical method of hydrolysis and polycondensation of previously unknown trifunctional (trimethoxysilylpropyl)glutarimide in the presence or absence of an acid or base catalyst, a universal approach to the formation of new thermostable soluble polysilsesquioxanes with glutarimide side-chain groups is proposed, which forms the basis for the synthesis of polysilsesquioxane polymers with different functionality. The weight average molecular weight of silsesquioxanes, determined by gel permeation chromatography, is practically independent of the reaction conditions and is 10-12 kDa; at the same time, the molecular weight distribution remains low and amounts to 1.38-1.47. According to thermogravimetric analysis, the resulting polysiloxanes have high thermal stability up to 335 °C. By the dynamic light scattering method, it was established that in an aqueous solution, silsesquioxane macromolecules are in an associated state, forming supramolecular structures due to the intermolecular interaction of individual macromolecules. The average hydrodynamic diameter of the particles was 46 nm. X-ray diffraction analysis showed the amorphous nature of the polymer. Polymer film coatings based on synthesized silsesquioxanes are characterized by 98% transmission in the visible spectrum and resistance to ultraviolet radiation, which is promising for the creation of functional transparent film coatings.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16233235