Bayesian Decision Curve Analysis With Bayesdca

ABSTRACT Clinical decisions are often guided by clinical prediction models or diagnostic tests. Decision curve analysis (DCA) combines classical assessment of predictive performance with the consequences of using these strategies for clinical decision‐making. In DCA, the best decision strategy is th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2024-12, Vol.43 (30), p.6042-6058
Hauptverfasser: Netto Flores Cruz, Giuliano, Korthauer, Keegan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Clinical decisions are often guided by clinical prediction models or diagnostic tests. Decision curve analysis (DCA) combines classical assessment of predictive performance with the consequences of using these strategies for clinical decision‐making. In DCA, the best decision strategy is the one that maximizes the net benefit: the net number of true positives (or negatives) provided by a given strategy. Here, we employ Bayesian approaches to DCA, addressing four fundamental concerns when evaluating clinical decision strategies: (i) which strategies are clinically useful, (ii) what is the best available decision strategy, (iii) which of two competing strategies is better, and (iv) what is the expected net benefit loss associated with the current level of uncertainty. While often consistent with frequentist point estimates, fully Bayesian DCA allows for an intuitive probabilistic interpretation framework and the incorporation of prior evidence. We evaluate the methods using simulation and provide a comprehensive case study. Software implementation is available in the bayesDCA R package. Ultimately, the Bayesian DCA workflow may help clinicians and health policymakers adopt better‐informed decisions.
ISSN:0277-6715
1097-0258
1097-0258
DOI:10.1002/sim.10277