Catalytic Enantioselective Hydrogen Atom Abstraction Enables the Asymmetric Oxidation of Meso Diols

Desymmetrization of meso diols is an important strategy for the synthesis of chiral oxygen-containing building blocks. Oxidative desymmetrization is an important subclass, but existing methods are often constrained by the need for activated alcohol substrates. We disclose a conceptually distinct str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-12, Vol.146 (49), p.33302-33308
Hauptverfasser: Lam, Nelson Y. S., Dhankhar, Jyoti, Lahdenperä, Antti S. K., Phipps, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Desymmetrization of meso diols is an important strategy for the synthesis of chiral oxygen-containing building blocks. Oxidative desymmetrization is an important subclass, but existing methods are often constrained by the need for activated alcohol substrates. We disclose a conceptually distinct strategy toward oxidative diol desymmetrization that is enabled by catalytic enantioselective hydrogen atom abstraction. Following single electron oxidation of a cinchona alkaloid-derived catalyst, enantiodetermining hydrogen atom abstraction generates a desymmetrized ketyl radical intermediate which reacts with either DIAD or O2 before in situ elimination to form valuable hydroxyketone products. A range of cyclic and acyclic meso diols are competent, defining the absolute configuration of up to four stereocenters in a single operation. As well as providing rapid access to complex hydroxyketones, this work emphasizes the broad synthetic potential of harnessing hydrogen atom abstraction in an enantioselective manner.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.4c13919