Artificial intelligence chatbot vs pathology faculty and residents: Real-world clinical questions from a genitourinary treatment planning conference
Artificial intelligence (AI)-based chatbots have demonstrated accuracy in a variety of fields, including medicine, but research has yet to substantiate their accuracy and clinical relevance. We evaluated an AI chatbot's answers to questions posed during a treatment planning conference. Patholog...
Gespeichert in:
Veröffentlicht in: | American journal of clinical pathology 2024-06, Vol.162 (6), p.541-543 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Artificial intelligence (AI)-based chatbots have demonstrated accuracy in a variety of fields, including medicine, but research has yet to substantiate their accuracy and clinical relevance. We evaluated an AI chatbot's answers to questions posed during a treatment planning conference.
Pathology residents, pathology faculty, and an AI chatbot (OpenAI ChatGPT [January 30, 2023, release]) answered a questionnaire curated from a genitourinary subspecialty treatment planning conference. Results were evaluated by 2 blinded adjudicators: a clinician expert and a pathology expert. Scores were based on accuracy and clinical relevance.
Overall, faculty scored highest (4.75), followed by the AI chatbot (4.10), research-prepared residents (3.50), and unprepared residents (2.87). The AI chatbot scored statistically significantly better than unprepared residents (P = .03) but not statistically significantly different from research-prepared residents (P = .33) or faculty (P = .30). Residents did not statistically significantly improve after research (P = .39), and faculty performed statistically significantly better than both resident categories (unprepared, P |
---|---|
ISSN: | 0002-9173 1943-7722 1943-7722 |
DOI: | 10.1093/ajcp/aqae078 |