Performance Prediction of High‐Entropy Perovskites La0.8Sr0.2MnxCoyFezO3 with Automated High‐Throughput Characterization of Combinatorial Libraries and Machine Learning

Perovskite oxides form a large family of materials with applications across various fields, owing to their structural and chemical flexibility. Efficient exploration of this extensive compositional space is now achievable through automated high‐throughput experimentation combined with machine learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-11, Vol.36 (50), p.e2407372-n/a
Hauptverfasser: Bozal‐Ginesta, Carlota, Sirvent, Juande, Cordaro, Giulio, Fearn, Sarah, Pablo‐García, Sergio, Chiabrera, Francesco, Choi, Changhyeok, Laa, Lisa, Núñez, Marc, Cavallaro, Andrea, Buzi, Fjorelo, Aguadero, Ainara, Dezanneau, Guilhem, Kilner, John, Morata, Alex, Baiutti, Federico, Aspuru‐Guzik, Alán, Tarancón, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Perovskite oxides form a large family of materials with applications across various fields, owing to their structural and chemical flexibility. Efficient exploration of this extensive compositional space is now achievable through automated high‐throughput experimentation combined with machine learning. In this study, we investigate the composition–structure–performance relationships of high‐entropy La0.8Sr0.2MnxCoyFezO3±δ perovskite oxides (0 < x, y, z
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.202407372