ARMC5 selectively degrades SCAP-free SREBF1 and is essential for fatty acid desaturation in adipocytes

SREBF1 plays the central role in lipid metabolism. It has been known that full-length SREBF1 that did not associate with SCAP (SCAP-free SREBF1) is actively degraded, but its molecular mechanism and its biological meaning remain unclear. ARMC5–CUL3 complex was recently identified as E3 ubiquitin lig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2024-12, Vol.300 (12), p.107953, Article 107953
Hauptverfasser: Uota, Akifumi, Okuno, Yosuke, Fukuhara, Atsunori, Sasaki, Shugo, Kobayashi, Sachiko, Shimomura, Iichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SREBF1 plays the central role in lipid metabolism. It has been known that full-length SREBF1 that did not associate with SCAP (SCAP-free SREBF1) is actively degraded, but its molecular mechanism and its biological meaning remain unclear. ARMC5–CUL3 complex was recently identified as E3 ubiquitin ligase of full-length SREBF. Although ARMC5 was involved in SREBF pathway in adrenocortical cells, the role of ARMC5 in adipocytes has not been investigated. In this study, adipocyte-specific Armc5 KO mice were generated. In the white adipose tissue of these mice, all the stearoyl-CoA desaturase (Scd) were drastically downregulated. Consistently, unsaturated fatty acids were decreased and saturated fatty acids were increased. The protein amount of full-length SREBF1 was increased, but ATAC-Seq peaks at the SREBF1-binding sites were markedly diminished around the Scd1 locus in the WAT of Armc5 KO mice. Armc5-deficient 3T3-L1 adipocytes also exhibited downregulation of Scd. Mechanistically, disruption of Armc5 restored decreased full-length SREBF1 in CHO cells deficient for Scap. Overexpression of Scap inhibited ARMC5-mediated degradation of full-length SREBF1, and overexpression of Armc5 increased nuclear SREBF1/full-length SREBF1 ratio and SREBF1 transcriptional activity in the presence of exogenous SCAP. These results demonstrated that ARMC5 selectively removes SCAP-free SREBF1 and stimulates SCAP-mediated SREBF1 processing, hence is essential for fatty acid desaturation in vivo.
ISSN:0021-9258
1083-351X
1083-351X
DOI:10.1016/j.jbc.2024.107953