Deep and dynamic metabolic and structural imaging in living tissues

Label-free imaging through two-photon autofluorescence of NAD(P)H allows for nondestructive, high-resolution visualization of cellular activities in living systems. However, its application to thick tissues has been restricted by its limited penetration depth within 300 μm, largely due to light scat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-12, Vol.10 (50), p.eadp2438
Hauptverfasser: Liu, Kunzan, Cao, Honghao, Shashaty, Kasey, Yu, Li-Yu, Spitz, Sarah, Pramotton, Francesca Michela, Wan, Zhengpeng, Kan, Ellen L, Tevonian, Erin N, Levy, Manuel, Lendaro, Eva, Kamm, Roger D, Griffith, Linda G, Wang, Fan, Qiu, Tong, You, Sixian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Label-free imaging through two-photon autofluorescence of NAD(P)H allows for nondestructive, high-resolution visualization of cellular activities in living systems. However, its application to thick tissues has been restricted by its limited penetration depth within 300 μm, largely due to light scattering. Here, we demonstrate that the imaging depth for NAD(P)H can be extended to more than 700 μm in living engineered human multicellular microtissues by adopting multimode fiber-based, low repetition rate, high peak power, three-photon excitation of NAD(P)H at 1100 nm. This is achieved by having more than 0.5 megawatts peak power at the band of 1100 ± 25 nm through adaptively modulating multimodal nonlinear pulse propagation with a compact fiber shaper. Moreover, the eightfold increase in pulse energy enables faster imaging of monocyte behaviors in the living multicellular models. These results represent a substantial advance for deep and dynamic imaging of intact living biosystems. The modular design is anticipated to allow wide adoption for demanding imaging applications, including cancer research, immune responses, and tissue engineering.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.adp2438