Changes in the synthesis of ribosomal ribonucleic acid and of poly(A)-containing ribonucleic acid during the differentiation of intestinal epithelial cells in the rat and in the chick
Epithelial cells were isolated from rat and chick small intestine by techniques which separated subpopulations of differentiating villus and upper crypt cells from each other and from populations of mitotically dividing lower crypt cells. Incorporation of precursors into epithelial-cell DNA, cytopla...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 1980-06, Vol.188 (3), p.609-618 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epithelial cells were isolated from rat and chick small intestine by techniques which separated subpopulations of differentiating villus and upper crypt cells from each other and from populations of mitotically dividing lower crypt cells. Incorporation of precursors into epithelial-cell DNA, cytoplasmic rRNA and cytoplasmic poly(A)-containing RNA occurred in the lower crypt cells in vivo when precursor was supplied from the vascular system of the intestine. Incorporation of precursor into 28S and 18S rRNA continued in the upper crypt cells, but occurred to only a very slight extent (if at all) in villus cells, whereas incorporation into poly(A)-containing RNA continued (at a diminishing rate) as the differentiating cells migrated along the villi. When precursor was supplied from the intestinal lumen, its incorporation into DNA and into rRNA of crypt cells was not very different from that observed with the other mode of precursor administration, but incorporation into villus-cell poly(A)-containing RNA then occurred at essentially the same rate in all intestinal epithelial cells in vivo. Cytoplasmic poly(A)-containing RNA appeared to turn over in rat crypt cells with a half-life not exceeding 24 h; crypt-cell rRNA showed no turnover and no evidence could be found for the presence of 'metabolic DNA'. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj1880609 |