Wavenumber-Explicit hp-FEM Analysis for Maxwell’s Equations with Impedance Boundary Conditions

The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2024, Vol.24 (6), p.1871-1939
Hauptverfasser: Melenk, J. M., Sauter, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1939
container_issue 6
container_start_page 1871
container_title Foundations of computational mathematics
container_volume 24
creator Melenk, J. M.
Sauter, S. A.
description The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in k and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nédélec elements of order p on a mesh with mesh size h is shown under the k -explicit scale resolution condition that (a) kh / p is sufficient small and (b) p / ln k is bounded from below.
doi_str_mv 10.1007/s10208-023-09626-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11618183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141065669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-5698851e19ae074f268e3c2ce69fbbcb32ce1a17cb47b55c9f9b73a1ecb4ff5c3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EoqXwAiyQJTZsDHYc2_EKldEUKrViA2JpHM9Jx1Vip3bSy47X6Ov1SXBnynBZsPKRz3f-c_kResnoW0apepcZrWhDaMUJ1bKSRD1C-0wyQThv-ONdrMQeepbzOaVMaFY_RXtcy1pLpfbR92_2EsI8tJDI8nrsvfMTXo_kaHmKD4Ptb7LPuIsJn9rrK-j7ux-3GS8vZjv5GDK-8tMaHw8jrGxwgD_EOaxsusGLGFZ-gzxHTzrbZ3jx8B6gr0fLL4tP5OTzx-PF4QlxtRITEVI3jWDAtAWq6q6SDXBXOZC6a1vX8hIyy5Rra9UK4XSnW8Utg_LRdcLxA_R-qzvO7QArB2FKtjdj8kMZyETrzd-Z4NfmLF4aVq7UsIYXhTcPCilezJAnM_jsys42QJyz4ayWkgpa6YK-_gc9j3Mq59pQjEoh5T1VbSmXYs4Jut00jJp7B83WQVMcNBsHjSpFr_7cY1fyy7IC8C2QSyqcQfrd-z-yPwGEEKmP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141065669</pqid></control><display><type>article</type><title>Wavenumber-Explicit hp-FEM Analysis for Maxwell’s Equations with Impedance Boundary Conditions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Melenk, J. M. ; Sauter, S. A.</creator><creatorcontrib>Melenk, J. M. ; Sauter, S. A.</creatorcontrib><description>The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in k and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nédélec elements of order p on a mesh with mesh size h is shown under the k -explicit scale resolution condition that (a) kh / p is sufficient small and (b) p / ln k is bounded from below.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-023-09626-7</identifier><identifier>PMID: 39649677</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Boundary conditions ; Computer Science ; Economics ; Finite element method ; Impedance ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Maxwell's equations ; Numerical Analysis ; Regularity ; Wavelengths</subject><ispartof>Foundations of computational mathematics, 2024, Vol.24 (6), p.1871-1939</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023.</rights><rights>Copyright Springer Nature B.V. 2024</rights><rights>The Author(s) 2023 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-5698851e19ae074f268e3c2ce69fbbcb32ce1a17cb47b55c9f9b73a1ecb4ff5c3</citedby><cites>FETCH-LOGICAL-c475t-5698851e19ae074f268e3c2ce69fbbcb32ce1a17cb47b55c9f9b73a1ecb4ff5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-023-09626-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-023-09626-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39649677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Melenk, J. M.</creatorcontrib><creatorcontrib>Sauter, S. A.</creatorcontrib><title>Wavenumber-Explicit hp-FEM Analysis for Maxwell’s Equations with Impedance Boundary Conditions</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><addtitle>Found Comut Math</addtitle><description>The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in k and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nédélec elements of order p on a mesh with mesh size h is shown under the k -explicit scale resolution condition that (a) kh / p is sufficient small and (b) p / ln k is bounded from below.</description><subject>Applications of Mathematics</subject><subject>Boundary conditions</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Finite element method</subject><subject>Impedance</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Maxwell's equations</subject><subject>Numerical Analysis</subject><subject>Regularity</subject><subject>Wavelengths</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctu1DAUhi0EoqXwAiyQJTZsDHYc2_EKldEUKrViA2JpHM9Jx1Vip3bSy47X6Ov1SXBnynBZsPKRz3f-c_kResnoW0apepcZrWhDaMUJ1bKSRD1C-0wyQThv-ONdrMQeepbzOaVMaFY_RXtcy1pLpfbR92_2EsI8tJDI8nrsvfMTXo_kaHmKD4Ptb7LPuIsJn9rrK-j7ux-3GS8vZjv5GDK-8tMaHw8jrGxwgD_EOaxsusGLGFZ-gzxHTzrbZ3jx8B6gr0fLL4tP5OTzx-PF4QlxtRITEVI3jWDAtAWq6q6SDXBXOZC6a1vX8hIyy5Rra9UK4XSnW8Utg_LRdcLxA_R-qzvO7QArB2FKtjdj8kMZyETrzd-Z4NfmLF4aVq7UsIYXhTcPCilezJAnM_jsys42QJyz4ayWkgpa6YK-_gc9j3Mq59pQjEoh5T1VbSmXYs4Jut00jJp7B83WQVMcNBsHjSpFr_7cY1fyy7IC8C2QSyqcQfrd-z-yPwGEEKmP</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Melenk, J. M.</creator><creator>Sauter, S. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2024</creationdate><title>Wavenumber-Explicit hp-FEM Analysis for Maxwell’s Equations with Impedance Boundary Conditions</title><author>Melenk, J. M. ; Sauter, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-5698851e19ae074f268e3c2ce69fbbcb32ce1a17cb47b55c9f9b73a1ecb4ff5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Boundary conditions</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Finite element method</topic><topic>Impedance</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Maxwell's equations</topic><topic>Numerical Analysis</topic><topic>Regularity</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melenk, J. M.</creatorcontrib><creatorcontrib>Sauter, S. A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melenk, J. M.</au><au>Sauter, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavenumber-Explicit hp-FEM Analysis for Maxwell’s Equations with Impedance Boundary Conditions</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><addtitle>Found Comut Math</addtitle><date>2024</date><risdate>2024</risdate><volume>24</volume><issue>6</issue><spage>1871</spage><epage>1939</epage><pages>1871-1939</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in k and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nédélec elements of order p on a mesh with mesh size h is shown under the k -explicit scale resolution condition that (a) kh / p is sufficient small and (b) p / ln k is bounded from below.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39649677</pmid><doi>10.1007/s10208-023-09626-7</doi><tpages>69</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2024, Vol.24 (6), p.1871-1939
issn 1615-3375
1615-3383
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11618183
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Boundary conditions
Computer Science
Economics
Finite element method
Impedance
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Maxwell's equations
Numerical Analysis
Regularity
Wavelengths
title Wavenumber-Explicit hp-FEM Analysis for Maxwell’s Equations with Impedance Boundary Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavenumber-Explicit%20hp-FEM%20Analysis%20for%20Maxwell%E2%80%99s%20Equations%20with%20Impedance%20Boundary%20Conditions&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Melenk,%20J.%20M.&rft.date=2024&rft.volume=24&rft.issue=6&rft.spage=1871&rft.epage=1939&rft.pages=1871-1939&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-023-09626-7&rft_dat=%3Cproquest_pubme%3E3141065669%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141065669&rft_id=info:pmid/39649677&rfr_iscdi=true