Wavenumber-Explicit hp-FEM Analysis for Maxwell’s Equations with Impedance Boundary Conditions
The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlle...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2024, Vol.24 (6), p.1871-1939 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The time-harmonic Maxwell equations at high wavenumber
k
in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in
k
and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nédélec elements of order
p
on a mesh with mesh size
h
is shown under the
k
-explicit scale resolution condition that (a)
kh
/
p
is sufficient small and (b)
p
/
ln
k
is bounded from below. |
---|---|
ISSN: | 1615-3375 1615-3383 |
DOI: | 10.1007/s10208-023-09626-7 |