AI-based fingerprint index of visceral adipose tissue for the prediction of bowel damage in patients with Crohn’s disease

The fingerprint features of visceral adipose tissue (VAT) are intricately linked to bowel damage (BD) in patients with Crohn’s disease (CD). We aimed to develop a VAT fingerprint index (VAT-FI) using radiomics and deep learning features extracted from computed tomography (CT) images of 1,135 CD pati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience 2024-10, Vol.27 (10), p.111022, Article 111022
Hauptverfasser: Li, Xuehua, Hu, Cicong, Wang, Haipeng, Lin, Yuqin, Li, Jiaqiang, Cui, Enming, Zhuang, Xiaozhao, Li, Jianpeng, Lu, Jiahang, Zhang, Ruonan, Wang, Yangdi, Peng, Zhenpeng, Sun, Canhui, Li, Ziping, Chen, Minhu, Shi, Li, Mao, Ren, Huang, Bingsheng, Feng, Shi-Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fingerprint features of visceral adipose tissue (VAT) are intricately linked to bowel damage (BD) in patients with Crohn’s disease (CD). We aimed to develop a VAT fingerprint index (VAT-FI) using radiomics and deep learning features extracted from computed tomography (CT) images of 1,135 CD patients across six hospitals (training cohort, n = 600; testing cohort, n = 535) for predicting BD, and to compare it with a subcutaneous adipose tissue (SAT)-FI. VAT-FI exhibited greater predictive accuracy than SAT-FI in both training (area under the receiver operating characteristic curve [AUC] = 0.822 vs. AUC = 0.745, p = 0.019) and testing (AUC = 0.791 vs. AUC = 0.687, p = 0.019) cohorts. Multivariate logistic regression analysis highlighted VAT-FI as the sole significant predictor (training cohort: hazard ratio [HR] = 1.684, p = 0.012; testing cohort: HR = 2.649, p 
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2024.111022