Angiotensin II activation of protein kinase C decreases delayed rectifier K+ current in rabbit vascular myocytes
1. The effect of angiotension II (Ang) on delayed rectifier K+ current (IK(V)) was studied in isolated rabbit portal vein smooth muscle cells using standard whole-cell voltage clamp technique. The effect of 100 nM Ang on macroscopic, whole-cell IK(V) was assessed in myocytes dialysed with 10 mM BAPT...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 1996-09, Vol.495 (Pt 3), p.689-700 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1. The effect of angiotension II (Ang) on delayed rectifier K+ current (IK(V)) was studied in isolated rabbit portal vein
smooth muscle cells using standard whole-cell voltage clamp technique. The effect of 100 nM Ang on macroscopic, whole-cell
IK(V) was assessed in myocytes dialysed with 10 mM BAPTA, 5 mM ATP and 1 mM GTP either at room temperature or at 30 degrees
C. 2. Application of Ang caused a decline in IK(V) which was reversed upon washout of the drug. Tail current recorded after
250 ms pulses to +30 mV and repolarization to -40 mV was reduced from 3.9 +/- 0.7 to 2.5 +/- 0.5 pA pF-1 at 20 degrees C (n
= 6) and from 4.5 +/- 0.5 to 3.13 +/- 0.4 pA pF-1 at 30 degrees C(n = 17). 3. Ang had no effect on outward current in the
presence of an AT1 selective antagonist, losartan (1 microM), which alone had no direct effect on the amplitude of IK(V).
Substitution of extracellular Ca2+ with Mg2+ in the presence of 10 microM intracellular BAPTA did not affect the suppression
of IK(V) by Ang. 4. Ang induced a decrease in time constant for the rapid phase of inactivation of the macroscopic current
(tau 1 reduced from 377 +/- 32 to 245 +/- 11 ms; tau 2 unchanged, n = 17). Neither the voltage dependence of activation nor
inactivation were affected by Ang. 5. The inhibition of IK(V) by Ang was abolished by intracellular dialysis with the selective
PKC inhibitors, calphostin C (1 microM) and chelerythrine (50 microM). These data provide strong evidence that the decline
in IK(V) due to Ang treatment is due to PKC activation. 6. The pattern of expression of PKC isoforms was examined in rabbit
portal vein using isoenzyme-specific antibodies: alpha, epsilon and zeta isoenzymes were detected, but beta, gamma, delta
and eta isoenzymes were not. 7. The lack of requirement for Ca2+, as well as the sensitivity of the Ang response to chelerythrine,
suggest the involvement of the Ca(2+)-independent PKC isoenzyme epsilon in the signal transduction pathway responsible for
IK(V) inhibition by Ang. |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1113/jphysiol.1996.sp021626 |