The 'window' component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones
1. The mechanism underlying a novel form of input signal amplification and bistability was investigated by intracellular recording in rat and cat thalamocortical (TC) neurones maintained in slices and by computer simulation with a biophysical model of these neurones. 2. In a narrow membrane potentia...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 1997-12, Vol.505 (Pt 3), p.689-705 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1. The mechanism underlying a novel form of input signal amplification and bistability was investigated by intracellular recording
in rat and cat thalamocortical (TC) neurones maintained in slices and by computer simulation with a biophysical model of these
neurones. 2. In a narrow membrane potential range centred around -60 mV, TC neurones challenged with small (10-50 pA), short
(50-200 ms) current steps produced a stereotyped, large amplitude hyperpolarization (> 20 mV) terminated by the burst firing
of action potentials, leading to amplification of the duration and amplitude of the input signal, that is hereafter referred
to as input signal amplification. 3. In the same voltage range centred around -60 mV, single evoked EPSPs and IPSPs also produced
input signal amplification, indicating that this behaviour can be triggered by physiologically relevant stimuli. In addition,
a novel, intrinsic, low frequency oscillation, characterized by a peculiar voltage dependence of its frequency and by the
presence of plateau potentials on the falling phase of low threshold Ca2+ potentials, was recorded. 4. Blockade of pure Na+
and K+ currents by tetrodotoxin (1 microM) and Ba2+ (0.1-2.0 mM), respectively, did not affect input signal amplification,
neither did the presence of excitatory or inhibitory amino acid receptor antagonists in the perfusion medium. 5. A decrease
in [Ca2+]o (from 2 to 1 mM) and an increase in [Mg2+]o (from 2 to 10 mM), or the addition of Ni2+ (2-3 mM), abolished input
signal amplification, while an increase in [Ca2+]o (from 2 to 8 mM) generated this behaviour in neurones where it was absent
in control conditions. These results indicate the involvement of the low threshold Ca2+ current (IT) in input signal amplification,
since the other Ca2+ currents of TC neurones are activated at potentials more positive than -40 mV. 6. Blockade of the slow
inward mixed cationic current (Ih) by 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino)-pyrimidinium++ + chloride (ZD
7288)(100-300 microM) did not affect the expression of the large amplitude hyperpolarization, but abolished the subsequent
repolarization to the original membrane potential. In this condition, therefore, input signal amplification was replaced by
bistable membrane behaviour, where two stable membrane potentials separated by 15-30 mV could be switched between by small
current steps. 7. Computer simulation with a model of a TC neurone, which contained only IT, Ih, K+ leak current (ILeak) |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1111/j.1469-7793.1997.689ba.x |