Diagnostic performances of Claude 3 Opus and Claude 3.5 Sonnet from patient history and key images in Radiology’s “Diagnosis Please” cases

Purpose The diagnostic performance of large language artificial intelligence (AI) models when utilizing radiological images has yet to be investigated. We employed Claude 3 Opus (released on March 4, 2024) and Claude 3.5 Sonnet (released on June 21, 2024) to investigate their diagnostic performances...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese journal of radiology 2024-12, Vol.42 (12), p.1399-1402
Hauptverfasser: Kurokawa, Ryo, Ohizumi, Yuji, Kanzawa, Jun, Kurokawa, Mariko, Sonoda, Yuki, Nakamura, Yuta, Kiguchi, Takao, Gonoi, Wataru, Abe, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The diagnostic performance of large language artificial intelligence (AI) models when utilizing radiological images has yet to be investigated. We employed Claude 3 Opus (released on March 4, 2024) and Claude 3.5 Sonnet (released on June 21, 2024) to investigate their diagnostic performances in response to the Radiology’s Diagnosis Please quiz questions. Materials and methods In this study, the AI models were tasked with listing the primary diagnosis and two differential diagnoses for 322 quiz questions from Radiology’s “Diagnosis Please” cases, which included cases 1 to 322, published from 1998 to 2023. The analyses were performed under the following conditions: (1) Condition 1: submitter-provided clinical history (text) alone. (2) Condition 2: submitter-provided clinical history and imaging findings (text). (3) Condition 3: clinical history (text) and key images (PNG file). We applied McNemar’s test to evaluate differences in the correct response rates for the overall accuracy under Conditions 1, 2, and 3 for each model and between the models. Results The correct diagnosis rates were 58/322 (18.0%) and 69/322 (21.4%), 201/322 (62.4%) and 209/322 (64.9%), and 80/322 (24.8%) and 97/322 (30.1%) for Conditions 1, 2, and 3 for Claude 3 Opus and Claude 3.5 Sonnet, respectively. The models provided the correct answer as a differential diagnosis in up to 26/322 (8.1%) for Opus and 23/322 (7.1%) for Sonnet. Statistically significant differences were observed in the correct response rates among all combinations of Conditions 1, 2, and 3 for each model ( p  
ISSN:1867-1071
1867-108X
1867-108X
DOI:10.1007/s11604-024-01634-z